
XML Document Clustering Using

Structure-preserving Flat Representation of

XML Content and Structure

Fedja Hadzic1, Michael Hecker1, and Andrea Tagarelli2

1 Digital Ecosystems and Business Intelligence Institute, Curtin University, Australia
Email: {fedja.hadzic, michael.hecker}@curtin.edu.au

2 Dept. of Electronics, Computer and Systems Sciences, University of Calabria, Italy
Email: tagarelli@deis.unical.it

Abstract. With the increasing use of XML in many domains, XML
document clustering has been a central research topic in semistructured
data management and mining. Due to the semistructured nature of XML
data, the clustering problem becomes particularly challenging, mainly
because structural similarity measures specifically designed to deal with
tree/graph-shaped data can be quite expensive. Specialized clustering
techniques are being developed to account for this difficulty, however
most of them still assume that XML documents are represented using
a semistructured data model. In this paper we take a simpler approach
whereby XML structural aspects are extracted from the documents to
generate a flat data format to which well-established clustering methods
can be directly applied. Hence, the expensive process of tree/graph data
mining is avoided, while the structural properties are still preserved.
Our experimental evaluation using a number of real world datasets and
comparing with existing structural clustering methods, has demonstrated
the significance of our approach.

1 Introduction

XML has become extremely popular in management and mining of semistruc-
tured/hierarchical text data due to its abilities in representing information in a
well-defined, extensible and machine readable format. This is evidenced by the
existence of many domain-specific XML based markup languages [17].

Clustering of XML documents has important applications in many domains
that need management and processing of real-life complex objects that are rep-
resented as semistructured data. It is a more challenging task than the standard
data clustering problem since the structural aspects in the data need to be taken
into account. Defining a distance/similarity function over semistructured data
that can be effectively and efficiently utilized for the XML clustering problem
is known to be a difficult research problem. Initially proposed techniques were
based on tree edit distance [13, 2]. Since calculating tree edit distance is known
to be a computationally expensive problem [2], different approaches for mea-
suring structural similarity have been proposed. For example, in [8] structural



information of XML documents is represented in form of paths contained in the
underlying tree model on which specialized similarity measures are defined. The
S-GRACE approach [12] converts an XML document into a structure graph and
the similarity is based on the number of common element-subelement relation-
ships. In [3], the XRep method is developed focusing on a notion of structural
XML cluster representative. This representative is built to capture the most rel-
evant structural features of the documents within a cluster, and it is used to as-
sign XML documents to structurally homogeneous groups in a cluster hierarchy.
Another tree-based, summary-aware framework for clustering XML documents
by structure is described in [4]. XML documents represented as rooted ordered
labeled trees are individually summarized to reduce nesting and repetition of
elements which are compared using a tree edit distance based on a variant of
the Chawathe’s algorithm [2]. The clustering scheme is based on a traditional
graph-theoretic divisive approach. Given a collection of XML documents, a fully
connected, weighted graph is built over the structural summaries of the input
documents, where the edge weights correspond to the structural distance be-
tween summaries. A minimum spanning tree (MST) of the graph is computed,
then the MST edges with a weight above a user-specified threshold are deleted.
The connected components of the remaining graph are the single-link clusters.

More recently, one can witness an increasing number of XML document
clustering approaches that take into account both the structure and content
of the documents [18, 5, 10, 16, 11]. For instance, XProj [1] utilizes frequent sub-
structures in a segment of data to measure the similarity, whereas HCX [10]
determines the structural similarity based on frequent subtrees to extract (con-
strained) content and represent it in a Vector Space Model. Recently, the use
of a Tensor Space Model to capture the content and structural information has
been proposed in [11]. The structure features for the model are generated based
on the length-constrained closed induced subtrees and these are used to con-
strain the content included in the model. In [16], subtrees that are cohesive
according to the semantics of the original XML document trees are modeled
into a transactional domain in which each item embeds a distinct combination
of semantically-enriched structure and content XML features.

However, regardless of the techniques developed to use XML structural infor-
mation at different refinement levels (i.e., node labels, edges, paths, twigs), the
large majority of existing methods for structure-based XML clustering rely on
tree/graph-shaped representation models. Consequently, the similarity/distance
functions that drive the proximity search and detection during the clustering,
are required to be suitable for the comparison of semistructured data, which is
known to be a computationally difficult problem.

In this work we propose an alternative approach for XML document clus-
tering, based on our recently proposed [6] structure preserving flat data repre-
sentation for tree-structured data (henceforth referred to as FDT). The conver-
sion process is based on the extraction of a document structure model within
which each document instance can be matched to generate the flat data repre-
sentation that captures the structural properties. Given such a representation,



well-established clustering methods originally designed for vectorial data can be
directly applied. CLUTO, a well-known toolkit for efficiently clustering large,
high-dimensional document collections [9, 20] is taken as the case in point and
is applied directly on the tree-structured data converted in the flat data format.
The complexity of incorporating structural information in a distance/similarity
measure is avoided, while the results can still be accompanied by the struc-
tural information captured by the document structure model. The implications
of the approach are that the exact position of nodes within a general structure
encompassing structural properties of all documents is taken into account dur-
ing clustering. This is somewhat different from XML clustering methods based
on subtree mining and matching, like XProj, which extract substructures that
can occur anywhere within the documents structure of a data segment. In our
approach, the user can specify a minimum frequency threshold during the doc-
ument structure model generation, so that the general structure extracted only
encompasses the frequently occurring structures among the documents being
clustered. Furthermore, given that many more clustering techniques exist for
flat data representation, the conversion approach in itself can potentially enable
a wider range of techniques to be applied for the XML clustering problem.

XML content can be quite broad encompassing elements, values, attributes
and attribute values. Although XML documents can be naturally modeled as
trees, it is not clear how this information should be organized, and it may well
be that it is dependent on the particular mining task as well as the application
at hand. For example, in frequent subtree mining the values associated with
elements are often assigned to a single node. This is both more efficient as we
avoid building large trees, and practical because from the frequent subtrees one
can discover interesting associations among the element values of an XML doc-
ument from a single domain. On the other hand in XML document clustering,
assigning the element name and value to a single node may not be desired, as
one would like to detect similarity among element names, even when the values
are different. This is even more so when the aim is to form clusters from hetero-
geneous collections of XML documents. In this work we also empirically study
the impact of including/excluding partial content from XML documents for the
clustering task. Our experimental evaluation was performed using several sets
of XML documents from a variety of domains. The comparisons with existing
XML clustering methods demonstrate the significance of our approach, in terms
of both efficiency in performing the clustering task and of quality of the output
clustering solutions.

2 Problem Background

The XML document clustering problem considered in this work can be defined
in the homogeneous and heterogeneous context, in which the goal is: given a
set of XML document instances from one domain, to group similar instances
together (homogeneous context), and given a set of XML documents from dif-
ferent domains, to group the documents arising from the same domain together
(heterogeneous context). Note however that even in the heterogeneous context



T5 T4 T3 T2 T1 T0 T0 

c b 

a 

w 

z 

u 

v 

z 

t 

w b 

a 

c 

c e 

b 

a 

c 

e c d e 

w v 

z 

t u 

0 a b -1 c -1

1 z w -1 v u -1 -1

2 z w t -1 -1

3 a b c -1 -1 c e -1 -1

4 a b e -1 c -1 -1 c d -1 e -1 -1

5 z w -1 v u -1 t -1 -1

Fig. 1. Example of a tree-structured database consisting of 6 transactions

one can subdivide the clusters so as to further cluster the instances of each
independent domain.

XML documents are conveniently modeled using a rooted ordered labeled
tree (e.g., [1, 13]), which can be denoted as T = (v0, V, L,E), where v0 ∈ V is
the root vertex; V is the set of vertices or nodes; L is a labeling function that
assigns a label L(v) to every vertex v ∈ V ; E = {(v1, v2)|v1, v2 ∈ V ∧v1 6= v2} is
the set of edges in the tree, and for each internal node the children are ordered
from left to right. Note that in relation to the particular mining task being
considered, each vertex v ∈ V can be chosen to correspond to a different aspect
of XML (e.g., in frequent subtree mining [7, 19], the common choice is that L(v)
corresponds to an element name or a combination of element name and value).
We will consider variation of XML content inclusion, and in Section 4 we explain
how these will be captured in the tree representation of XML documents.

In order to represent trees in our approach, we used the pre-order (depth-
first) string encoding (ϕ) [19]. This pre-order string encoding can be generated
by adding vertex labels in the pre-order traversal of a tree T = (v0, V, L,E) and
appending a backtrack symbol (e.g., ‘-1’, ‘-1’ /∈ L) whenever we backtrack from a
child node to its parent node. Figure 1 shows a tree-database (Tdb) consisting of
6 tree instances (transactions). On the right of Fig. 1, the string encoding format
representation commonly used in frequent subtree mining [7, 19] is shown for Tdb.
The first column stores transaction (tree) identifiers while the second column
contains the string encoding ϕ of each tree. Note that the backtrack symbols
can be omitted after the last node in the string encoding (e.g., ϕ(T3) =‘a b c
-1 -1 c e’).

3 Method Description

3.1 Conversion of Tree-structured Database to Flat Representation

The first row of a (relational) table consists of attribute names, which in a tree
database Tdb are scattered through independent tree instances (transactions).
One way to approach this problem is to first assume a structure/model according
to which all the instances are organized. Each of the instances in a Tdb should
be a valid subtree of this document structure model, denoted as DSM.

The process of extracting a DSM from a tree database consists of traversing
the tree database and expanding the current DSM as necessary so that every
tree instance can be matched against DSM. This process was formally described



Algorithm 1 Database Structure Model (DSM) extraction from a tree database

Input: a tree database Tdb

Output: the string encoding ϕ(DSM) of the extracted DSM
1: inputNodeLevel = 0 {current level of ϕ(tidi)k}
2: DSMNodeLevel = 0 {current level of ϕ(T (hmax, dmax))k}
3: ϕ(DSM) = ϕ(tid0) {set default DSM (use x instead of labels)}
4: for i = 1 → n− 1 {n = |Tdb|}
5: for all ϕ(tidi)k ∈ ϕ(tidi)
6: for p = 0 → (|ϕ(DSM)| − 1)
7: if ϕ(tidi)k = −1 then dec(inputNodeLevel)
8: else inc(inputNodeLevel)
9: if ϕ(DSM)p = ‘b’ then dec(DSMNodeLevel)
10: else inc(DSMNodeLevel)
11: if inputNodeLevel 6= DSMNodeLevel

12: if ϕ(tidi)k = −1
13: while inputNodeLevel 6= DSMNodeLevel do

14: inc(p)
15: if ϕ(DSM)p = −1 then dec(DSMNodeLevel)
16: else inc(DSMNodeLevel)
17: else

18: while inputNodeLevel 6= DSMNodeLevel do

19: if ϕ(tidi)k 6= −1 then ϕ(DSM)p+1 = ‘x’
20: else ϕ(DSM)p+1 = ‘b’
21: inc(k), inc(p)
22: if ϕ(tidi)k = −1 then dec(inputNodeLevel)
23: else inc(inputNodeLevel)
24: return ϕ(DSM)

in [6], and we replicate it here for clarity purposes. Let the tree database con-
sisting of n transactions be denoted as Tdb = {tid0, tid1, . . . , tidn−1}, and let the
string encoding of the tree instance at transaction tidi be denoted as ϕ(tidi).
Further, let |ϕ(tidi)| denote the number of elements in ϕ(tidi), and ϕ(tidi)k
(k = {0, 1, . . . , |ϕ(tidi)|− 1}) denote the k-th element (a label or a backtrack) of
ϕ(tidi). The same notation for the string encoding of the (current) DSM is used,
i.e., ϕ(DSM). However, rather than storing the actual labels in ϕ(DSM), x is
always stored to represent a node in general, and b to represent a backtrack.
The process of extracting the DSM from Tdb is depicted in Algorithm 1.

Note that we also store the number of times that a tree instance has matched
a node or backtrack in the progressively built DSM. Occurrence of each node
attribute (except the root node) within the DSM implies the existence of a
specific backtrack attribute to ensure structural validity of the pre-order string
encoding. Hence, after the whole DSM is extracted, it is safe to simply remove
any nodes and backtracks that do not satisfy the minimum support set by the
user. This will result in DSM reflecting the structure that was exhibited by as
many instances as the user specified minimum support threshold. This relates
to the next stage of populating the table, since the existence/non-existence of



Table 1. Flat representation of Tdb in Fig. 1 (optional columns in grey)

x0 x1 x2 b0 x3 b1 b2 x4 x5 b3 x6 b4 b5

a b 0 0 0 0 1 c 0 0 0 0 1

z w 0 0 0 0 1 v u 1 0 0 1

z w t 1 0 0 1 0 0 0 0 0 0

a b c 1 0 0 1 c e 1 0 0 1

a b e 1 c 1 1 c d 1 e 1 1

z w 0 0 0 0 1 v u 1 t 1 1

backtracks does not need to be stored in the generated table. These are stored
in the DSM and can be used for mapping structural information onto detected
cluster constraints.

To illustrate the conversion process using DSM please refer back to Fig. 1.
In this example the DSM is reflected in the structure of T4 in Fig. 1 and it
becomes the first row in Table 1. Since the order of the nodes (and backtracks)
is important, the nodes and backtracks are labeled sequentially according to
their occurrence in DSM. For nodes (labels in the pre-order string encoding of
DSM), xi is used as the attribute name, where i corresponds to the pre-order
position of the node in DSM, while for backtracks, bj is used as the attribute
name, where j corresponds to the backtrack number in DSM. Hence, from our
example in Fig. 1, DSM = x0 x1 x2 b0 x3 b1 b2 x4 x5 b3 x6 b4 b5. To
fill in the remaining rows, every transaction from Tdb is scanned and when a
node or a backtrack is encountered, a ‘1’ is placed to the matching column (i.e.,
under the matching node (xi) or backtrack (bj) in DSM), while the remaining
entries are assigned values of ‘0’ (non-existence). Table 1 shows the resulting
FDT (structure preserving Flat Data representation for Tree-structured data).

During the FDT generation even if parts of a tree instance cannot all be
matched to the DSM because of low occurrence, we still need to capture the
partial information from the tree instance that structurally conforms to DSM.
Each instance is matched against the DSM, and the current levels of the tree
instances and DSM are tracked. Whenever the levels match, the label or ‘1’ is
stored in the corresponding column of the table, and when levels do not match,
either the DSM or the tree instance encoding is traversed until the levels match.
As an example, if minimum support threshold was set to 3 and the Tdb in Fig. 1
was converted, the resulting DSM would be DSM = x0 x1 x2 b0 b1 x3 x4 b2 b3,
while the resulting flat representation would be equivalent to the one in Table 1
when columns with attributes x3,b1,x6,b4 are removed, and the remaining at-
tributes renumbered sequentially to reflect the new DSM. Note that all the grey-
coloured columns from the tables can be safely removed, as any results obtained
can be mapped back to the extracted DSM, and the cluster constraints enriched
with structural information. Hence, no information is lost, while the complex
process of incorporating structural information during clustering is avoided. The
minimum support threshold should be set to reflect the percentage of documents
(instances) that are expected to form the smallest group/cluster. For example, in
the experiments presented in Section 4, since the number of instances from each



class was known, the support was set not far below the percentage of instances
of minority class. The choice is thus dependent on some apriori expectation of
the number of documents to be considered as part of one group/cluster. This
comprises the tree-structured to flat data conversion step in our method, which
enables a clustering approach to be directly applied without using specialized
distance measures for tree structures.

3.2 Characteristics/Implications of the Proposed Approach

The DSM governs what a valid instance of a particular tree characteristic is,
and the exact positions of the node within the DSM are taken into account. As
an example, consider the subtree with encoding ‘a b c’ from the Tdb in Fig. 1.
Within the current frequent subtree mining framework (upon which XProj [1]
and HCX [10] XML clustering approaches are based) this subtree would be con-
sidered to occur in two transactions T3 and T4. Using the proposed approach the
occurrence of ‘a b c’ in T3 would be considered different than in T4, because node
‘c’ occurs at different (pre-order) position, and hence the instance is represented
differently in the table. This can be seen from Table 1, since the occurrence of
node ‘c’ in T3 is matched against attribute node x2, while it is matched against
attribute node x3 for its occurrence in T4. This illustrates the key difference in
our approach, and it implies that two document instances will be considered
similar only if their substructures occur at the same/similar positions. Different
occurrences of a substructure in the DSM may indicate that it is used in a dif-
ferent context, and hence a different domain, and in these cases such property
is useful. This is especially the case if all the instances in a Tdb follow the same
structure and node layout as the general document model. This property could
be less useful in scenarios, where the instances of a Tdb may not follow the same
order or not have all the elements of the general document structure (e.g., XML
schema) available. In spite of this difference the proposed method is an alter-
native approach to clustering, and can arrive at high quality clusters as will be
demonstrated in the experimental results given in the next section.

4 Experimental Evaluation

4.1 Experimental Methodology

Our approach is composed of 5 steps, covering data preparation, document struc-
ture model extraction, conversion to a flat representation, document clustering,
and clustering evaluation.

Step 1. Our approach starts by creating a single XML document that
contains all the instances of all XML documents considered. They are organized
in such a way that all instances are siblings on the root level of the document for
further processing. The second part of the data preparation phase is the creation
of multiple variations of the input document. We have chosen the following
variations and show it on the following example (with labels applied):

<[N]dataset [A]subject=[W]‘‘astronomy’’>[V]‘‘Stars’’</[N]dataset>



(1) tag names only, which are labeled as N (dataset in our example), (2) tag
names and #PCDATA elements (values), which are labeled as N and V (dataset
and ‘‘Stars’’ in our example), (3) tag names and attribute names, which are
labeled as N and A (dataset and subject in our example), (4) tag names,
#PCDATA elements (values) and attribute names, which are labeled as N, V
and A (dataset, ‘‘Stars’’, and subject in our example), and (5), tag names,
#PCDATA elements (values), attribute names and attribute values, which are
labeled as N, V, A and W (dataset, ‘‘Stars’’, subject, and ‘‘astronomy’’

in our example). For each of these variations, we output a string representation
file and a mapping file that contains the mappings between the original document
and the string representation. In each of the variations, we consider each item
as a separate node for further processing. For instance, variation NVAW of our
example would look as follows:

<[N]dataset><[A]subject><[W]astronomy/></[A]subject><[V]Stars/></[N]dataset>

Each variation is stored in a commonly used string representation format [7,
19], example of which was given in Fig. 1.

Step 2. This step performs the document structure model (DSM) extraction.
The string encoding representation of each of the 5 variations from the previous
step (N, NV, NA, NVA, NVAW) is traversed to generate the output that contains
the string encoding of DSM (i.e., ϕ(DSM)) for each variation. As explained in
Section 3, the user can specify the minimum support threshold so that the DSM
only captures the structural characteristics if they have occurred in specified
percentage of document instances. In our experiments, we choose the support
value to be not far below the percentage of instances from the minority class.

Step 3. In the third step, the ϕ(DSM) from the previous step and the
respective output from step 1 (string encoding format representation of the tree
database) are used to create the flat representation. This is done for two varia-
tions, one with the backtracks (-1 or bi) as attributes and second without, and
each instance is labeled with a class value (if available). The output of each of
these variations is the generated flat representation, example of which was given
in Table 1.

Step 4. The fourth step converts these files into CLUTO dense matrix for-
mat, where we perform a number of CLUTO runs. Three runs are performed
for each of the following similarity measures: correlation coefficient (corr), Eu-
clidean (eucl) and extended Jaccard (jacc). The number of clusters is set with
respect to the amount of different classes from the original input.

Step 5. Once CLUTO has finished generating all output files, clustering val-
idation is performed to evaluate the clustering solution in terms of both internal
and external clustering validity criteria. The internal validity criteria are based
on the average of internal and external cluster similarity, respectively denoted
as ISim and ESim as produced by CLUTO output, which essentially assess the
cluster compactness and cluster separation, respectively, of a given clustering so-
lution. For the exact formula of how such measures are computed, the reader is
referred to [20]. The external criteria aim to evaluate how well a clustering solu-



tion fits a known organization of the data into predefined classes; we hereinafter
refer to this organization as reference classification. In this work we resorted to
commonly used external criteria for document clustering, namely Entropy (E),
Purity (Pty), micro-averaged F-measure (Fm), and macro-averaged F-measure
(FM ) (with relating overall precision, P , and recall, R), definitions of which can
be found in [15, 20, 16].

4.2 Data

The proposed method is evaluated on three sets of data. The first dataset (hence-
forth Real) was previously used in [3], and it contains collections of documents
from 5 different domains, namely 217 astronomy documents (http://adc.gsfc.nasa.
gov), 264 documents representing messages from a Web forum (http://userland.
com), 64 press news documents (http://www.prweb.com/rss.php), 51 documents
containing issues of SIGMOD record (http://www.dia.uniroma3.it/Araneus/Sig
mod/) and 53 documents representing wrapper programs for Web sites. Thus,
it is a representative of the problem in heterogeneous context (cf. Section 2).

The second dataset (henceforth DEBII N) was generated by taking Apache2
(v2.2.3) web server log files from the DEBI Institute website (http://debii.curtin.
edu.au) for a 4-month period (i.e., homogeneous context). The order of web
pages accessed is organized as a tree where the navigational pattern is reflected
through the pre-order traversal of the tree. This way of representing web logs is
based on the LOGML representation [14], which allows for a more detailed and
informative representation of web logs using an XML template. The difference
is that we are only storing the web pages accessed as nodes in a tree, and
ignore other information (e.g., time stamps). Hence, only option N (elements
only) in tree generation is used by all the approaches compared. The instances
were labeled according to 3 classes, namely, external access, within-university
access, and within-DEBI-institute access. Hence, there is some overlap between
the classes, as it is well possible that similar usage patterns occur within each
class.

The third dataset (henceforth Process) was generated from publicly avail-
able process log datasets (http://prom.win.tue.nl/tools/prom/). These datasets
describe examples of business process logs in MXML, a business process man-
agement XML based template. Several sets of process logs were taken, each
of which was assigned a unique class (8 classes in total) depending which cate-
gory/system/format it came from. The majority of process logs were quite similar
in structure, as the same MXML format was used. This data is therefore a good
example of content-based XML document clustering application, where it is im-
portant to consider more extensive content information in addition to element
names. While this dataset is rather homogeneous by nature, due to different
categories and/or source systems used for data generation, it can be seen as a
representative of the problem in mixed heterogeneous/homogeneous context.

As previously mentioned, in our data preparation phase all of the documents
are merged into a single tree database, and varied content is included, variations
of which we will denote as dataset N, dataset NA, dataset NV, dataset NVA



Table 2. Dataset characteristics

|Tr| |L| Avg |T | Avg |D| Avg |F | Max |T | Max |D| Max |F |

Real N 649 127 94.85 4.43 3.18 1440 9 330

Real NA 649 158 11.94 4.59 3.19 1474 10 330

Real NV 649 15572 150.92 5.35 1.67 2307 9 330

Real NVA 649 15603 173.006 5.43 1.79 2341 10 330

Real NVAW 649 18022 194.426 5.59 1.67 2375 11 330

DEBII N 10996 16946 6.93 4.13 1.52 30 29 26

Proc N 20968 8 80.33 2.2 3.63 1256 4 258

Proc NA 20968 12 89.56 2.8 3.41 1975 4 258

Proc NV 20968 22185 138.67 3.2 1.69 2260 4 256

Proc NVA 20968 22189 147.92 3.2 1.79 3019 4 258

Proc NVAW 20968 23883 156.36 3.8 1.73 3833 5 258

and dataset NVAW. Table 2 summarizes the structural characteristics of each
dataset and its content variation, and the following notation is used: |Tr| - # of
transactions (independent tree instances), |L| - # of unique node labels; |T | - #
of nodes (size) in a transaction; |D| - depth; |F | - fan-out or degree.

4.3 Results

We assessed the clustering performance of our approach in terms of accuracy as
well as efficiency, and also compared the results with those obtained by two exist-
ing XML clustering methods, namely the approach presented in [4] (hereinafter
denoted as DAL) and XRep [3].

Unlike XRep (which is a stand-alone XML clustering method), DAL can en-
able the direct application of the CLUTO software, by providing it with a sim-
ilarity matrix that stores the (normalized) structural distance values converted
into similarity values (each distance value is subtracted to 1 and the difference
is stored into the matrix). Hence, both our DSM and DAL are compared using
CLUTO to cluster the data uniquely prepared by the different approaches. Note
that all of the approaches have been enhanced in their preprocessing modules to
deal with the variations of XML document as explained earlier (i.e., N, NA, NV,
NVA, NVAW). Each algorithm name is appended with the symbol indicating
the variation of content considered. In addition, our approach is also optionally
appended with the similarity function it used within the CLUTO toolkit (e.g.,
DSM corr NA, DSM eucl NA, DSM jacc NA). All of our experiments were carried
out on the same machine sequentially. The server in question is a quad socket
quad core Xeon E7330 (2.4 GHz) machine, which is dedicated for running our
experiments in a Windows Server 2008 64 bit environment. This machine has
128GB of RAM and we have allocated 50GB of memory to every experiment.

In Fig. 2(a) we summarize the clustering results for Real data, with input
number of clusters set to 5. Note that for XRep we could not obtain the informa-
tion necessary to determine the average internal and external similarity of the
formed clusters, represented in column 8 and 9, respectively. The support used
for DSM extraction phase was set to 5%. As can be seen, when corr similarity
measure is used within our approach, better results were generally obtained in



Pty E P R FM Fm ISim ESim

DAL N 0.851 0.502 0.721 0.783 0.751 0.733 0.609 0.14

DAL NA 0.901 0.505 0.8 0.94 0.864 0.875 0.597 0.09

DAL NV 1 0 1 1 1 1 0.569 0.081

DAL NVA 1 0 1 1 1 1 0.578 0.089

DAL NVAW 1 0 1 1 1 1 0.561 0.081

XRep N 1 0 1 1 1 1 - -

XRep NA 1 0 1 0.996 0.998 0.999 - -

XRep NV 1 0 1 1 1 1 - -

XRep NVA 1 0 1 0.996 0.998 0.999 - -

XRep NVAW 1 0 1 1 1 1 - -

DSM corr N 1 0 1 1 1 1 0.777 0.014

DSM corr NA 0.998 0.408 0.999 0.996 0.998 0.998 0.782 -0.02

DSM corr NV 0.998 0.408 0.999 0.996 0.998 0.998 0.757 0.067

DSM corr NVA 0.998 0.408 0.999 0.996 0.998 0.998 0.767 0.004

DSM corr NVAW 0.998 0.408 0.999 0.996 0.998 0.998 0.764 0.004

DSM eucl N 0.966 0.136 1 0.593 0.745 0.626 0.605 0.003

DSM eucl NA 0.965 0.162 1 0.587 0.740 0.571 0.512 0.007

DSM eucl NV 0.995 0.066 1 0.627 0.771 0.624 0.389 0.002

DSM eucl NVA 0.994 0.043 1 0.641 0.781 0.642 0.427 0.002

DSM eucl NVAW 0.994 0.059 1 0.641 0.781 0.679 0.357 0.001

DSM jacc N 0.968 0.142 1 0.598 0.748 0.598 0.458 0.005

DSM jacc NA 0.965 0.162 1 0.571 0.727 0.592 0.494 0.005

DSM jacc NV 0.998 0.005 1 0.725 0.840 0.681 0.406 0.003

DSM jacc NVA 0.997 0.006 1 0.708 0.829 0.691 0.424 0.003

DSM jacc NVAW 0.997 0.006 1 0.714 0.833 0.683 0.422 0.002

DSM corr N(s=10) 0.919 0.075 0.799 0.913 0.852 0.858 0.735 0.008

DSM corr N(s=20) 0.919 0.075 0.799 0.941 0.864 0.892 0.794 -0.029

(a) (b)

Fig. 2. Real data: (a) cluster quality comparison and (b) total runtime taken for dif-
ferent Real dataset variations

terms of Pty, FM , and Fm; moreover, in case of FM , recall scores were con-
sistently higher than eucl and jacc over the variations of XML document (from
about +0.42 to +0.22). Focusing on our corr based approach, we can see that
the external-criteria-based quality of clusters was recognized as optimal for vari-
ation N (element names only); as far as internal evaluation, ISim for variation N
was slightly worse than variation NA only, nevertheless DSM ISim values were
always higher than the corresponding ISim values obtained by the competing
clustering methods. In general, DSM behaved as comparable to the competing
methods with some minor differences. For example, our approach performed best
for option N while the DAL approach did not achieve optimal results for this
option. We also observed that, for this data, there was no difference in the re-
sults obtained by DSM when backtrack attributes were included. The last two
columns of the table of Fig. 2(a) show how the different support thresholds (i.e.,
10% and 20%) affect the results for DSM corr N option. Note that the percent-
age of instances from the minority class in this dataset, cover less than 10% of
the database, and hence the structural characteristics unique to those instances
will not be considered in DSM. Hence, one can expect less optimal values for
all of the values except for internal and external cluster similarity, which can be
confirmed by comparing these cases with the results of row 12. At s = 20%, more
optimal values for internal and external cluster similarity were achieved, but this
could be mainly due to the fact that the unique structural characteristics of the
instances of minority class were not captured by any formed cluster.

The time performance comparison between the different approaches, for the
different variations of the data, is shown in Fig. 2(b). This is the total time



Table 3. Cluster quality comparison for DEBII data

Pty E P R FM Fm ISim ESim

DAL N 0.801 0.860 0.349 0.513 0.415 0.655 0.277 0.187

XRep N 0.897 0.188 1 0.001 0.002 0.273 - -

DSM corr N 0.801 0.806 0.384 0.504 0.436 0.504 0.470 0.191

DSM corr N B 0.801 0.797 0.387 0.511 0.441 0.5 0.505 0.237

DSM eucl N 0.802 0.622 0.639 0.146 0.237 0.332 0.537 0

DSM eucl N B 0.802 0.622 0.639 0.146 0.237 0.332 0.537 0

DSM jacc N 0.801 0.601 0.546 0.092 0.157 0.316 0.475 0

DSM jacc N B 0.801 0.647 0.541 0.162 0.249 0.459 0.475 0

DSM corr N(s = 10) 0.801 0.546 0.358 0.446 0.397 0.501 0.468 0.102

DSM corr N(s = 20) 0.801 0.513 0.389 0.446 0.416 0.57 0.507 0.003

taken including preprocessing and clustering of the data. As more content from
XML data was considered, the task became more complex (especially when
element values were considered), but such a higher complexity negatively affected
mainly the performance of the competing methods; precisely, total runtimes (in
seconds) were 2744.14 (DAL), 115885.16 (XRep), and 91.30 (DSM), where in
all cases the preprocessing stage took about from 88% (DAL) to 99% (DSM) of
the total runtime. Overall, the proposed approach dramatically outperformed the
competing methods in terms of runtime (from 2 up to 4 orders of magnitude) and
the improvements were particularly evident for the content-oriented variations.

Table 3 shows the clustering results for DEBII data, with input number of
clusters set to 3. The support used for DSM extraction phase was set to 3%.
Note that here we have also included the results when the backtrack attributes
were considered, but as one can see there was only a slight difference for corr

based similarity measure. Again, DSM performed as good as or better than DAL
in terms of all criteria except Fm, whereas XRep was not able to detect the 3-
class organization of the data as it ended to identify many small clusters. The
total runtimes (seconds) were as follows: 91.3 (90.4 for preprocessing) for DSM,
2744.14 (2421.65 for preprocessing) for DAL, and 115885.16 for XRep. The last
two columns of Table 3 show how the different support thresholds (i.e., 10% and
20%) affect the results for DSM corr N option. Comparing with the results of row
4, one can see that increasing the support has no effect on purity, better results
for entropy and external cluster similarity, while there is a small difference in
remaining criteria. In contrast to the previous experiment, in this case increasing
the support can positively affect entropy, which is because in DEBII data there
is a higher possibility of overlapping classes.

When we ran the different approaches on Process data (input number of
clusters set to 8), the XRep approach exhausted the available memory and the
DAL approach took nearly 3 days to complete. The support used for DSM
extraction phase was set to 0.4%. In Fig. 3(a) we show clustering results for our
approach (no backtracks considered) and DAL approach. In contrast to the other
two data, higher external-criteria-based quality was achieved by our approach
when more content variations were included, leading to improvements up to
about 0.22 (Fm) on NVAW variation. Higher intra- and extra-cluster similarity
were instead obtained on N variation. However, this was not the case for the DAL



approach, as Fm only increased by 0.004 for NVAW option and ISim and ESim
were higher for NVA and NVAW options. Overall, one can see DSM performed
better than DAL in terms of all criteria except R and ESim; however, these
two criteria should be considered w.r.t. P and ISim, respectively, and hence
the results were still comparable according to all four criteria as a whole. The
DAL approach took approximately 21.5h to complete the clustering for NVAW
variation, 15.5h for NV, 18.5h for NVA, 3h for NA and 2.5h for N. Due to these
large runtimes, in Fig. 3(b) we show the total and preprocessing time taken by
our approach for the variations of Process data. As expected, the presence of
element values impacted more on the preprocessing as well as the clustering step
than non-V variations.

Pty E P R FM Fm ISim ESim

DAL N 0.396 0.999 0.125 0.998 0.222 0.363 0.488 0.246

DAL NA 0.396 0.999 0.228 0.874 0.361 0.362 0.404 0.224

DAL NV 0.397 0.999 0.35 0.751 0.478 0.363 0.492 0.273

DAL NVA 0.397 0.999 0.35 0.752 0.478 0.363 0.516 0.253

DAL NVAW 0.4 0.996 0.248 0.886 0.387 0.367 0.493 0.189

DSM corr N 0.583 0.73 0.341 0.443 0.386 0.4 0.838 0.464

DSM corr NA 0.601 0.667 0.461 0.501 0.480 0.431 0.829 0.431

DSM corr NV 0.752 0.446 0.43 0.549 0.483 0.548 0.753 0.243

DSM corr NVA 0.756 0.423 0.445 0.583 0.505 0.543 0.746 0.245

DSM corr NVAW 0.787 0.385 0.556 0.604 0.579 0.618 0.749 0.206

(a) (b)

Fig. 3. Process data: (a) cluster quality comparison and (b) preprocessing and total
runtime taken by DSM for different variations of the dataset

5 Conclusions

In this paper we have presented an alternative approach to XML document
clustering. The structural aspects from XML data are first extracted from the
document to generate a structure-preserving flat data format, to which well-
established traditional clustering approaches, such as the partitional one, can
be directly applied. Within this view, we have taken the CLUTO clustering
toolkit as a case in point and have compared the results with existing structural
clustering methods. There is strong empirical evidence that the complexity asso-
ciated with XML document clustering due to the structural aspects that need to
be considered, can be significantly reduced with the proposed approach. At the
same time high quality clustering results can be obtained that are comparable or
better than those obtained by XML clustering methods that deal with complex
structural similarity determination. Furthermore, given that many more clus-
tering techniques exist for flat data representation, the conversion approach in
itself can potentially enable a wider range of techniques to be applied for XML
document clustering problem.

Acknowledgments. The authors wish to acknowledge Theodore Dalamagas
for providing his XML clustering tool [4].



References

1. C. C. Aggarwal, N. Ta, J. Wang, J. Feng, and M. Zaki. XProj: a framework for
projected structural clustering of XML documents. In Proc. ACM KDD Conf.,
pages 46–55, 2007.

2. P. Bille. A survey on tree edit distance and related problems. Theoretical Computer
Science, 337(1–3):217–239, 2005.

3. G. Costa, G. Manco, R. Ortale, and A. Tagarelli. A Tree-Based Approach to
Clustering XML Documents by Structure. In Proc. PKDD Conf., pages 137–148,
2004.

4. T. Dalamagas, T. Cheng, K.-J. Winkel, and T. K. Sellis. A methodology for
clustering XML documents by structure. Information Systems, 31(3), 2006.

5. A. Doucet and M. Lehtonen. Unsupervised Classification of Text-Centric XML
Document Collections. In Proc. INEX Workshop, pages 497–509, 2006.

6. F. Hadzic. A Structure Preserving Flat Data Format Representation for Tree-
Structured Data. In Proc. PAKDD Workshops (QIME’11). Springer, 2011.

7. F. Hadzic, H. Tan, and T. S. Dillon. Mining of Data with Complex Structures.
Studies in Computational Intelligence. Springer, 1st edition, 2010.

8. S. Joshi, N. Agrawal, Krishnapuram R., and S. Negi. A bag of paths model for
measuring structural similarity in Web documents. In Proc. ACM KDD Conf.,
pages 577–582, 2003.

9. G. Karypis. CLUTO - Software for Clustering High-Dimensional Datasets.
http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download, 2002/2007.

10. S. Kutty, R. Nayak, and Y. Li. HCX: an efficient hybrid clustering approach for
XML documents. In Proc. ACM Symposium on Document Engineering, pages
94–97, 2009.

11. S. Kutty, R. Nayak, and Y. Li. XML Documents Clustering Using a Tensor Space
Model. In Proc. PAKDD Conf., pages 488–499, 2011.

12. W. Lian, D. W.-L. Cheung, N. Mamoulis, and S.-M. Yiu. An Efficient and Scalable
Algorithm for Clustering XML Documents by Structure. IEEE Transactions on
Knowledge Data Engineering, 16(1):82–96, 2004.

13. A. Nierman and H. V. Jagadish. Evaluating Structural Similarity in XML Docu-
ments. In Proc. WebDB Workshop, pages 61–66, 2002.

14. J. R. Punin, M. S. Krishnamoorthy, and M. J. Zaki. LOGML: Log Markup Lan-
guage for Web Usage Mining. In Proc. WEBKDD Workshop, pages 88–112, 2001.

15. M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering
techniques. In Proc. KDD Workshop on Text Mining, 2000.

16. A. Tagarelli and S. Greco. Semantic clustering of XML documents. ACM Trans-
actions on Information Systems, 28(1), 2010.

17. J. T. Yao, A. Varde, E. Rundensteiner, and S. Fahrenholz. XML Based Markup
Languages for Specific Domains. In Web-based Support Systems, Advanced Infor-
mation and Knowledge Processing, pages 215–238. Springer London, 2010.

18. J. P. Yoon, V. Raghavan, V. Chakilam, and L. Kerschberg. BitCube: A Three-
Dimensional Bitmap Indexing for XML Documents. Journal of Intelligent Infor-
mation Systems, 17(2–3):241–254, 2001.

19. M. J. Zaki. Efficiently Mining Frequent Trees in a Forest: Algorithms and Applica-
tions. IEEE Transactions on Knowledge and Data Engineering, 17(8):1021–1035,
2005.

20. Y. Zhao and G. Karypis. Empirical and Theoretical Comparison of Selected Crite-
rion Functions for Document Clustering. Machine Learning, 55(3):311–331, 2004.


