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Abstract—The massive presence of silent members in on-
line communities, the so-called lurkers, has long attracted the
attention of researchers in social science, cognitive psychology,
and computer-human interaction. However, the study of lurking
phenomena represents an unexplored opportunity of research
in data mining, information retrieval and related fields. In this
paper, we take a first step towards the formal specification and
analysis of lurking in social networks. Particularly, focusing on
the network topology, we address the new problem of lurker
ranking and propose the first centrality methods specifically
conceived for ranking lurkers in social networks. Using Twitter
and FriendFeed as cases in point, our methods’ performance
was evaluated against data-driven rankings as well as existing
centrality methods, including the classic PageRank and alpha-
centrality. Empirical evidence has shown the significance of our
lurker ranking approach, which substantially differs from other
methods in effectively identifying and ranking lurkers.

I. INTRODUCTION

The majority of members of online communities play
a passive or silent role as individuals that do not readily
contribute to the shared online space. Such individuals are
often called lurkers, since they belong to a community but
remain quite unnoticed while watching, reading or, in general,
benefiting from others’ information or services without signif-
icantly giving back to the community.

Lurking characterization in online communities has been
a controversial issue from a social science and computer-
human interaction perspective. Since the early works on social
motivations and implications of lurking [1], [2], one common
perception of lurking is that based on the infrequency of active
participation (e.g., posting) to the community life, but other
definitions have been given under the hypotheses of free-riding,
legitimate peripheral participation [3], individual information
strategy of microlearning [4], and knowledge sharing barriers
(e.g., interpersonal or technological barriers) [5]. In the realm
of social networks (SNs), negative views of the lurkers have
been however supplanted with a neutral or even marginally
positive view. A neutral perception of lurkers is related to
the fact that their silent presence is seen as harmless and
reflects a subjective reticence (rather than malicious motiva-
tions) to contribute to the community wisdom; half of times,
a lurker simply feels that gathering information by browsing
is enough without the need of being further involved in the
community [2]. However, lurking can be expected or even
encouraged because it allows users (especially newcomers) to
learn or improve their understanding of the etiquette of an
online community before they can decide to provide a valuable

contribution over time. As a matter of fact, lurkers make up
“the audience” of a community—it has been estimated that at
any point in time approximately 90% of community members
may be lurkers [1], [2]—and as such, it represents the crowd
to attract. Tailoring online advertising strategies to the lurkers’
behavioral profile with the ultimate objective of de-lurking
those users hence becomes an attractive opportunity.

Surprisingly, despite the fact that lurking has been recog-
nized and surveyed in social sciences, we are not aware of any
previous study that addresses the problem of ranking lurkers in
a SN. Note that, beyond the frequent yet trivial case of users
that exhibit a peripheral unstructured membership, hidden
forms of lurking are massively present in SNs, which make
it challenging to mine lurkers in a SN. While lurking is hard
to track from a personal dispositional viewpoint, it appears that
ranking lurkers is still possible by handling the situational vari-
ables that are related to the network of relationships between
members. Moreover, a well-founded principle of eigenvector
centrality like that we adopt in this work, will enable the
determination of each node’s lurking score in function of the
lurking scores of the nodes that it is connected to, based on
global graph properties of propagation and attenuation of the
information flowing through the network.

One may notice that ranking influential people is clearly
valuable as we naturally tend to follow leaders and learn
from them, and conversely wonder “why ranking lurkers?”.
We argue that scoring community members as lurkers, rather
than limiting to solely recognize (potential or actual) lurkers,
should be seen as essential to determine the contingencies in
the network under which different lurking behaviors occur,
and ultimately to aid devising both generic and ad-hoc de-
lurking plans and strategies. In effect, ordering members by
decreasing lurking score would enable to manage priority
in de-lurking applications, to identify the sub-communities
particularly affected by lurkers, and to define personalized
triggers of active participation. For example, lurkers of a given
sub-community developed around an entity of interest (e.g.,
a person, or theme) would welcome messages that highlight
the key topics (a service that is already delivered to its users
by Twitter, for example), social events that describe how
to approach a discussion in a forum or to start off your
own project in a collaboration network, or introduce the role
of forum moderators or team leaders. Moreover, in order
to alleviate information overload, which is recognized as a
major negative factor for participation, various mechanisms of
filtering (e.g., recommending threads of discussion, providing



visual maps of the categories of activities) could be applied
with the ultimate goal of revealing the lurker’s value (i.e.,
ideas, opinions, expertise) to the community.

Contributions and scope of this paper. In this paper we
take a first step towards mining lurkers in SNs. We scrutinize
the concept of lurking in SNs to determine the essential criteria
that can be taken as the basis for mining lurkers. We lay out a
basic topology-driven lurking definition, and propose various
formulations of the lurker ranking problem that rely on the
different aspects of our topology-driven lurking concept. By
resorting to classic link-analysis ranking algorithms, PageRank
and alpha-centrality, we provide a complete specification of
lurker ranking methods.

We conducted experiments on Twitter and FriendFeed
networks, whereby the evaluation goal was twofold: (i) to
assess whether, upon modeling the directed graph underlying
a SN to make it aware of the information the nodes receive
rather than they produce, PageRank and related methods would
be suited to solve such a new ranking problem in SNs; and
(ii) to demonstrate the ability of our approach in capturing
lurking cases that are intuitive yet non-trivial. Quantitative
and qualitative results have demonstrated the effectiveness of
our lurker ranking approach, highlighting superior performance
against PageRank, alpha-centrality and the Fair-Bets model,
which conversely might fail to correctly identify and rank
presumed lurkers.

We would like to point out that other aspects than the
network topology could not be covered in this paper, whose
goal is to provide first solutions to a new ranking problem in
SN. Indeed, as for instance PageRank was originally conceived
for ranking web pages regardless of their content but based
solely on their location in the Web, analogously here we just
needed to focus on handling the network’s graph structure to
rank lurkers. Nevertheless, at the end of this paper, we will
raise a number of challenges that capture increasingly complex
intuitions of lurking, thus drawing up future developments of
the lurker ranking problem.

II. TOPOLOGY-DRIVEN LURKING

User interactions in a SN are typically modeled as in-
fluence relationships, whose varying strengths are used to
determine and rank the influential users.1 In effect, ranking
methods, such as PageRank, follow the conventional model
of influence graph, which implies that the more (or more
relevant) incoming links a node has the more important it is;
for example, translated to Twitter terms, the more followers a
user has the more interesting his/her published tweets might be.
Recall however that, while this appears a reasonable approach,
accounting for the node’s in-degree solely should not be
considered as reliable when determining the node’s importance
score. Rather, a combination of information based on incoming
as well as outgoing links really matters. In any case, PageRank
and related methods cannot be directly applied to lurking
analysis because they assume that links across users carry the
meaning of node influence propagation, which is related to the
amount of information (number of walks) a node generates. By

1Generic social links, like closeness relationships (i.e., friendships, acquain-
tances), should not be treated as valid indicators of real user interaction, as
studied in, e.g., [6].
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Fig. 1. An example SN graph

contrast, lurking behaviors build on the amount of information
a node receives; again, in Twitter terms, if user v follows user
u, then v is benefiting from u’s information (i.e., v is receiving
u’s tweets), whereby relationship is modeled as a link from u
to v. Within this view, a key notion for modeling the mutual
contribution from incoming and outgoing links appears to be
the (weighted) in/out-degree ratio: in an influence-oriented
graph, this would map to the follower-to-followee ratio of a
user (so that, the higher this ratio, the higher the probability
that the user is influential), whereas in a lurking-oriented graph,
the strength of a user’s lurking status would be proportional to
her/his followee-to-follower ratio. It should be noted that the
significance of leveraging the in/out-degree ratio for ranking
purposes in SN was already identified in [7], although again
to score the authority of nodes. Upon the in/out-degree ratio
intuition, we now provide a basic definition of lurking which
aims to lay out the essential hypotheses of a lurking status
based solely on the topology information available in a SN.

Definition 1 (Topology-driven lurking): Let G = 〈V, E〉
denote the directed graph representing a SN, with set of nodes
(members) V and set of edges E , whereby the semantics of
any edge (u, v) is that v is receiving information from u. A
node v with infinite in/out-degree ratio (i.e., a sink node) is
trivially regarded as a lurker. A node v with in/out-degree ratio
above 1 shows a lurking status, whose strength is determined
proportionally to (i) the in/out-degree ratio, (ii) the strength of
non-lurking behavior shown by in-neighbors of v, and (iii) the
strength of lurking behavior shown by out-neighbors of v.

The above definition states that determining a node’s lurk-
ing behavior not only relies on its in/out-degree ratio but also
on the extent to which its in-neighbors are rather influential
nodes as well as its out-neighbors may in turn show a lurking
behavior. To support this intuition, let us consider the example
of network in Figure 1. Nodes 3, 7, 8, 10, 11 have the highest
in/out-degree ratio (i.e., 2), and as such they are candidate
lurkers in the network. However, node 8 should be scored
higher than others, since it benefits from information coming
from two connected components, which are likely to contain
influential nodes in the network (i.e., 5, 6). By contrast, nodes
10, 11 should be scored as lurkers lower than node 8, since
they are mainly fed by 8 itself; similarly, nodes 3, 7 should be
scored higher than 10, 11 but lower than 8, since they receive
information that propagates from a smaller subgraph.



III. LURKER RANKING

Given the directed graph G = 〈V, E〉 representing a SN,
for any node v ∈ V let B(v) = {u|(u, v) ∈ E} and
R(v) = {u|(v, u) ∈ E} denote the set of in-neighbors (i.e.,
backward nodes) and out-neighbors (i.e., reference nodes) of
v, respectively. The sizes of sets B(v) and R(v) are the
in-degree and the out-degree of v, denoted as in(v) and
out(v), respectively. Let A be the adjacency matrix of G, with
Aij = 1 if (vi, vj) ∈ E , and Aij = 0 otherwise. Moreover, let
D̂in and D̂out denote the in-degree and out-degree matrices,
respectively. The in-degree matrix is a diagonal matrix defined
as D̂in = diag(eTA), and the out-degree matrix is a diagonal
matrix defined as D̂out = diag(Ae), where e denotes a
|V|-dimensional column vector of ones. To deal with sink
nodes and avoid infinite in/out-degree ratios, we introduce
a Laplace smoothing factor in the definition of the diagonal
matrices, and hence we will actually use the matrices defined
as Din = D̂in + I and Dout = D̂out + I; consequently, in(i)
(resp. out(i)) is meant hereinafter as the actual in-degree (resp.
out-degree) of node i plus one.

According to Definition 1, the simplest non-trivial form
of a measure of lurker ranking is given by ri =

in(i)
out(i) , with

i ∈ V . However, the above form has clearly the disadvantage
of assigning many nodes the same or very close ranks and,
as we previously discussed, it ignores that the status of both
the in-neighbors and out-neighbors contributes to the status of
any given node. In the following we elaborate on each of those
aspects separately.

In-neighbors-driven lurking: According to the second
point in Definition 1, an in-neighbors-driven lurking measure
can be defined as: ri =

∑
j∈B(i)

out(j)
in(j) rj . Hence, the score of

node i increases with the number of its in-neighbors and with
their likelihood of being non-lurkers, which is expressed by a
relatively high out/in-degree. The above formula however can
be enhanced by including a factor that is inversely proportional
to the i’s out-degree:

ri =
1

out(i)

∑
j∈B(i)

out(j)

in(j)
rj (1)

Note that (1) accounts for both the contribution of a node’s in-
neighbors and its own in/out-degree property. Also, the set of
equations defined by (1) has a matrix representation as follows:
r = (Dout

−1 AT Dout Din
−1) r.

Out-neighbors-driven lurking: The exclusive contribu-
tion of out-neighbors for the calculation of a node’s lurking
score, according to the third point of Definition 1, can be
formalized as: ri =

∑
j∈R(i)

in(j)
out(j)rj . However, this method

would let the score of a node increase with the tendency of its
out-neighbors of being lurkers, while ignoring the status of the
node itself; as a consequence, not only reciprocal lurkers will
be scored high but also every node from which lurkers receive
information. A correction factor should hence be introduced
as proportional to the in-degree of a node:

ri =
in(i)∑

j∈R(i) in(j)

∑
j∈R(i)

in(j)

out(j)
rj (2)

In (2), the in-degree of node i is divided by the sum
of in-degrees of its out-neighbors in order to score i

higher if it receives more than what its out-neighbors
receive. The matrix form of (2) is as follows: r =
(Din diag(ADine)

−1 (ADinDout
−1)) r.

In-Out-neighbors-driven lurking: The previous defini-
tions of in-neighbors-driven and out-neighbors-driven lurking
can in principle be combined to obtain an integrated represen-
tation of all three aspects in Definition 1. Within this view, we
define the score of node i as:

ri =

 1

out(i)

∑
j∈B(i)

out(j)

in(j)
rj


1 +

 in(i)∑
j∈R(i) in(j)

∑
j∈R(i)

in(j)

out(j)
rj

 (3)

Note that in (3) we have emphasized the aspect related to
the strength of non-lurking behavior of in-neighbors, which
is expected to have a better fit of the hypothetical likelihood
function for a given node.

A. PageRank and alpha-centrality based lurker ranking

The renowned Google’s PageRank and the alpha-centrality
methods will be used to provide a complete specification of
the previously proposed models of lurker ranking. While being
widely applied to a variety of application domains with the
purpose of scoring the influence or prestige in information
networks, the two methods rely on different assumptions which
make it worth the exploration of lurker ranking through both
approaches. In the following, we first recall the PageRank and
alpha-centrality methods, then we will provide our PageRank-
and alpha-centrality-based lurker ranking implementations.

PageRank and alpha-centrality in a nutshell: PageRank
[8] extends the basic citation idea by assigning each page with
a notion of importance that both relies on and influences the
importance of neighboring pages. The PageRank vector is the
unique solution of the iterative equation r = αSr+ (1−α)v.
S denotes the column-stochastic transition probability matrix,
which is defined as (D̂out

−1
A)T + eaT/|V|, where a is a

vector such that ai = 1 if node i has zero out-degree, and 0
otherwise. Vector v is typically defined as (1/|V|)e, but can
be modeled to bias the PageRank to boost a specific subset of
nodes in the graph. Term α is a real-valued coefficient (α ∈
[0, 1], commonly set to 0.85), which acts as a damping factor
so that the random surfer is expected to discontinue the chain
with probability 1 − α, and hence to randomly select a page
each with relevance 1/|V| (teleportation).

Alpha-centrality [9] expresses the centrality of a node as
the number of paths linking it to other nodes, exponentially
attenuated by their length. Moreover, it takes into account
the possibility that each node’s status may also depend on
information that comes from outside the network or that
may regard solely the member. Alpha-centrality is defined as
r = αATr + v, where v is the vector of exogenous source
of information (v = e as default), and α here reflects the
relative importance of endogenous versus exogenous factors in
the determination of centrality. High values of α (e.g., 0.85)
make the close neighborhood contribute less to the centrality
of a given node. The rank obtained using alpha-centrality can
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Fig. 2. Lurker ranking in the example SN graph of Fig. 1: LRin (on top) vs.
PageRank (on bottom). Nodes are sized proportionally to their ranking scores.

be considered as the steady state distribution of an information
spread process on a network, with probability α to transmit a
message or influence along a link.

LurkerRank methods: We now define our lurker rank-
ing methods upon the basic PageRank and alpha-centrality. We
will refer to any of these algorithms as LurkerRank (for short
LR), with prefix ac- to distinguish the alpha-centrality-based
variants, and the various formulations of lurking with different
suffixes in such a way that:

• LRin for the in-neighbors-driven LurkerRank:

ri = α

 1

out(i)

∑
j∈B(i)

w(j, i)
out(j)

in(j)
rj

 +
1− α
|V|

(4)

• LRout for the out-neighbors-driven LurkerRank:

ri = α

 in(i)∑
j∈R(i) in(j)

∑
j∈R(i)

w(i, j)
in(j)

out(j)
rj

+
1− α
|V|

(5)

• LRin-out for the in-out-neighbors-driven LurkerRank:

ri = α

 1

out(i)

∑
j∈B(i)

w(j, i)
out(j)

in(j)
rj

(1+ in(i)∑
j∈R(i) in(j)

∑
j∈R(i)

w(i, j)
in(j)

out(j)
rj

+
1− α
|V|

(6)

TABLE I. EVALUATION NETWORK DATASETS

data # nodes # links avg avg # source nodes avg in/out-
in-degree path length # sink nodes degree ∗

Twitter 16,009,364 132,290,000 8.26 5.91 1,067,936 2.6510,298,788

FriendFeed 493,019 19,153,367 38.85 3.82 41,953 1.66292,003
∗ Sink nodes and source nodes are excluded.

Fig. 3. In-degree to out-degree ratio distributions on Twitter (on the left)
and FriendFeed (on the right). Source nodes and sink nodes are excluded.

• ac-LRin for the alpha-centrality-based in-neighbors-
driven LurkerRank:

ri = α

 1

out(i)

∑
j∈B(i)

w(j, i)
out(j)

in(j)
rj

 + 1 (7)

• and analogously ac-LRout and ac-LRin-out.

Note that in the LR formulations, we have introduced edge
weights to deal with weighted graphs as well; although, as in
our experimental setting, they are set as unitary by default.
Figure 2 compares the rankings obtained by our LRin and
basic PageRank on the example network of Figure 1 (α set
to the default 0.85). Using LRin, node 8 was ranked highest
(0.146), followed by 3 and 7 (0.112), and then 11 (0.094),
10 (0.088): this sheds light on the ability of LRin to match
our definition of lurking (cf. discussion about Figure 1 in the
previous section). By contrast, PageRank ranked first nodes 10
and 11 (both around 0.256), and then 3 and 7 with a significant
gap in score from the first two (0.116), followed by 8 (0.052),
1 (0.048); moreover, node 5 was ranked eighth, despite it is
a major feeder of the lurker 8, while it was correctly ranked
lowest by LRin. Similarly, alpha-centrality (results not shown)
did not fare well as it ranked first nodes 11 (0.317) and 10
(0.308), before ranking node 8 (0.095), and nodes 3 and 7 in
ninth and tenth position both with a score of 0.004.

IV. EXPERIMENTAL EVALUATION

A. Data

Two SNs were taken as cases in point for our evalua-
tion, namely Twitter and FriendFeed . Beyond the complex-
ity of their technical and sociological aspects, the two SNs
have been selected since they naturally provide asymmetric
relationships—recall that in our setting, a link from user i to
user j means that j is a follower or subscriber of i—and also
have quite different topological properties, as shown in Table I.
Figure 3 also displays the in/out-degree distribution in each of
the networks (due to massive presence of sink nodes which
correspond to infinite in/out-degree, the figure concentrates on
the nodes with finite in/out-degree).



From the Twitter dump studied in [10], we extracted the
follower-followee topology starting from a connected compo-
nent of one hundred thousands of users and their complete
neighborhoods. This resulted in a network of about 16M users
and 132M links. Actually, the building of our Twitter was
constrained to the availability of a partial copy of the original
dataset in [10] (we luckily got it before the Twitter’s new Terms
of Services was applied to avoid sharing tweet data) from
which we gathered information about the number of retweets
a user received. This information was exploited to define
a Twitter-based ground-truth ranking and also to perform a
qualitative evaluation on Twitter , as we shall describe later in
this section.

FriendFeed is a real-time feed aggregator that aims to
facilitate tracking users’ social activities across multiple SN
and bookmarking websites, blogs and microblogging services.
We used the latest version of the dataset studied in [11], which
offers information at various levels of interaction (subscrip-
tion/like/comment). Note that the study pointed out the high
similarity of the FriendFeed conversational/interaction scenario
with Facebook (rather than with Twitter or other microblogging
services). As suggested in [11], due to the recognized presence
of spambots in this SN dataset, we filtered out users with an
excessive number of posts (above 1200 posts in the monitoring
period, or 20 posts per day).

B. Assessment methodology

Competing methods and notations: We compared
our proposed methods against PageRank (henceforth PR),
alpha-centrality (henceforth AC), and Fair-Bets model [7]
(henceforth FB). The latter method, already mentioned in
Section II, computes the score of any node i as ri =
(1/out(i))

∑
j∈B(i) rj . In addition, we included in the eval-

uation the in/out-degree distribution of the nodes in a network
dataset, as a baseline method (henceforth IO).

Data-driven evaluation: Given the novelty of the prob-
lem at hand, we had to cope with an issue relating to the
lack of ground-truth data for lurker ranking. In the attempt
of simulating a ground-truth evaluation, we generated a data-
driven ranking (henceforth DD) for each dataset, and used it
to assess the proposed and competing methods.

On Twitter , we calculated the score of a node as directly
proportional to its in/out-degree (Laplace add-one smoothed,
cf. Section III) and inversely exponentially with a Twitter-
specific measure of influence: r∗i = in(i)

out(i) exp(−EI(i)). EI(·)
denotes the empirical measure of influence [12] which is
used to estimate the influence of a twitterer based on the
amount of information s/he posted (i.e., tweets) and that
her/his followers have retweeted. For a twitterer i, EI(i) =
(1/out(i))

∑
j∈R(i) nRetweets(j), where nRetweets(j) is the

number of retweets by follower j. Note that, as found in [10],
a ranking based on retweets differs from that based on the
number of followers, and this prompted us to combine the
two aspects in our data-driven ranking.

We defined an analytically similar function for the Friend-
Feed data-driven ranking, in which the exponent (with negative
sign) is the average add-one number of comments received by
a user multiplied by the log10 of the add-ten number of posts
by that user. Note that this combination of indicators of user’s

activity with user’s influence was needed since only a limited
portion (below 10%) of users in FriendFeed had information
on the number of received comments.

Assessment criteria: In order to comparatively evalu-
ate our proposed methods’ performance w.r.t. the competing
methods, we resorted to two well-known assessment criteria,
namely Fagin’s intersection metric [13] and Bpref [14].

Fagin measure allows for determining how well two rank-
ing lists are in agreement with each other. This is regarded as
the problem of comparing “partial rankings”, since elements in
one list may not be present in the other list. Moreover, accord-
ing to [15], a ranking evaluation measure should consider top-
weightedness, i.e., the top of the list gets higher weight than the
tail. Applied to any two top-k lists L′,L′′, the Fagin score is
defined as: F (L′,L′′, k) = (1/k)

∑
q=1..k |L

′
:q∩L

′′
:q|/q, where

L:q denotes the sets of nodes from the 1st to the qth position
in the ranking. Therefore, F is the average over the sum of the
weighted overlaps based on the first k nodes in both rankings.

Bpref [14] evaluates the performance from a different view,
i.e., the number of non-relevant candidates. It computes a
preference relation of whether judged relevant candidates R of
a list L′ are retrieved, i.e., occur in a list L′′, ahead of judged
irrelevant candidates N , and is formulated as Bpref(R,N) =
(1/|R|)

∑
r(1 − (#of n ranked higher than r)/|R|), where r

is a relevant retrieved candidate, and n is a member of the
first |R| irrelevant retrieved candidates. In our setting, we first
determined N as the set of nodes with data-driven ranking
score below or equal to 1, and used it for comparisons w.r.t.
DD; whereas, for comparisons among competing methods,
N was defined as the bottom of the corresponding method’s
ranking having the same size as N in the data-driven ranking.
R was selected as the set of nodes having top-l% score from
the complement of N .

Both F and Bpref are within [0, 1], whereby values closer
to 1 correspond to better scores. For the experiments discussed
in the following, we setup the size k of the top-ranked lists
for Fagin evaluation to k = 102, 103, 104, and the l% of
relevant candidates for Bpref evaluation to l = 10, 25, 50 (i.e.,
relevant candidates in the 90th percentile, the third quartile and
the median). Moreover, unless otherwise specified, F scores
will correspond to ranking lists without sink nodes, in order
to avoid biasing (presumably overstating) our evaluation with
trivial lurkers.

C. Results

1) Quantitative evaluation: We started our evaluation by
first exploring the behavior of our LurkerRank methods (α
set to the default value of 0.85) w.r.t. the data-driven ranking
of each dataset (results not shown). On both datasets, we
generally observed that, for any given setting of Fagin’s k
and Bpref’s l parameters, the performance of LurkerRank
methods, with the exception of LRout and ac-LRout, were not
subject to significant fluctuations over the number of iterations.
Moreover, it was interesting to observe on both datasets that all
LurkerRank methods consistently reached a ranking stability
very quickly, in the range 35÷75 iterations.

Tables II–III compare our LurkerRank methods against
PageRank, alpha-centrality, Fair-Bets (all at convergence) as
well as against DD and IO, for all variations of Fagin’s and



TABLE II. COMPARATIVE PERFORMANCES ON Twitter .

F Bpref
k = 102 // 103 // 104 l = 10 // 25 // 50

DD IO PR AC FB DD IO PR AC FB
LRin .527 .404 0.0 0.0 .112 .997 .992 .121 .790 .441

.289 .209 0.0 0.0 .127 .995 .989 .473 .914 .704

.581 .617 .001 .001 .068 .985 .962 .521 .866 .606
LRout .030 .032 .181 .010 .034 .045 0.0 .754 .311 .313

.008 .008 .351 .024 .015 .055 .001 .757 .650 .600

.003 .002 .437 .048 .005 .109 .074 .641 .678 .648
LRin-out .475 .364 0.0 0.0 .064 .968 .981 .039 .826 .204

.314 .277 0.0 0.0 .063 .979 .977 .387 .929 .524

.666 .688 .001 .001 .032 .961 .925 .453 .878 .489
ac-LRin .583 .459 0.0 0.0 .174 .993 .990 .072 .808 .339

.573 .570 0.0 0.0 .122 .992 .988 .443 .921 .653

.767 .810 .001 .001 .048 .982 .967 .501 .872 .575
ac-LRout .038 .032 .244 .006 .036 .049 0.0 .796 .339 .307

.009 .008 .319 .017 .011 .059 0.0 .775 .659 .598

.003 .002 .362 .042 .004 .120 .081 .654 .687 .643
ac-LRin-out .473 .363 0.0 0.0 .062 .957 .981 .039 .828 .203

.278 .234 0.0 0.0 .062 .975 .976 .386 .930 .464

.663 .685 .001 .001 .031 .957 .933 .453 .880 .454

TABLE III. COMPARATIVE PERFORMANCES ON FriendFeed .

F Bpref
k = 102 // 103 // 104 l = 10 // 25 // 50

DD IO PR AC FB DD IO PR AC FB
LRin .542 .690 .024 .010 .453 1.0 .980 .331 .606 .985

.488 .586 .108 .118 .384 .998 .976 .570 .802 .977

.576 .628 .126 .153 .493 .986 .953 .678 .843 .898
LRout .015 .009 .479 .620 .011 .008 0.0 .691 .672 .031

.138 .163 .550 .725 .167 .030 .038 .764 .746 .066

.154 .156 .498 .704 .184 .062 .110 .739 .737 .258
LRin-out .207 .297 .032 .042 .170 .972 .910 .252 .604 .879

.278 .320 .061 .064 .166 .955 .910 .553 .794 .870

.424 .455 .076 .099 .338 .914 .874 .642 .815 .813
ac-LRin .575 .735 .025 .014 .467 1.0 .980 .300 .605 .980

.520 .627 .118 .131 .403 .999 .977 .548 .803 .969

.603 .660 .130 .161 .503 .988 .954 .661 .845 .882
ac-LRout .015 .009 .479 .620 .011 .008 0.0 .691 .672 .031

.138 .163 .550 .725 .167 .030 0.0 .749 .726 .066

.154 .156 .498 .704 .184 .040 .080 .723 .718 .257
ac-LRin-out .169 .243 0.0 0.0 .126 .958 .891 .237 .594 .852

.240 .273 .001 .001 .122 .942 .892 .546 .785 .836

.400 .426 .041 .064 .310 .898 .853 .634 .803 .782

Bpref’s parameters. On Twitter (Table II), LRin and LRin-out
along with their ac- counterparts showed a relatively much
higher F intersection with DD (0.516 on average) and IO
(0.473) than with FB (0.08), and a nearly empty F w.r.t.
PR and AC. By contrast, LRout and ac-LRout exhibited a
larger F with PR, although below 0.316 on average, while
scoring even lower w.r.t. the other methods. Bpref evaluation
led to mostly similar remarks on the relative comparison
between proposed and other methods: LRin, LRin-out and
their ac- counterparts highly matched DD and IO (around
0.97 on average), but also a moderately high Bpref w.r.t. AC
(0.87) and mid-low Bpref w.r.t. FB (0.47). Again, like for the
Fagin evaluation, LRout and ac-LRout showed no significant
matches in practice with DD (while scoring pretty high w.r.t.
PR): interestingly, this behavior confirms our intuition that
determining the strength of lurking of a given node based on
the strength of the lurking behavior shown by its out-neighbors
(i.e., third aspect of Definition 1) is actually weaker than the
other criteria given (and hence, other lurker ranking methods)
and cannot provide meaningful results when used solely.

On FriendFeed (Table III), LRin and LRin-out along with
their ac- counterparts were again the best-performing methods
w.r.t. DD (0.42 F and 0.97 Bpref ), and also showed mid
F (0.34) and high Bpref (0.89) w.r.t. FB. Yet, LRout and
ac-LRout were moderately in agreement with PR and AC in
terms of F , whereas all LR generally achieved mid Bpref
with both PR and AC.

We also determined the statistical significance of the better
performance of LurkerRank methods w.r.t. the competing ones,
through two stages of statistical testing analysis; in both cases,

TABLE IV. Twitter T-TEST ON THE PER-ITERATION PERFORMANCES.

Fagin evaluation Bpref evaluation
PR AC FB PR AC FB

LRin 4.4E-65 4.4E-65 8.4E-11 5.2E-110 1.1E-25 2.1E-65
LRout 2.8E-41 2.7E-41 1.8E-04 3.2E-50 5.5E-79 9.2E-71
LRin-out 4.3E-277 4.4E-277 2.9E-12 1.5E-89 6.7E-21 7.6E-65
ac-LRin 5.6E-228 5.6E-228 4.8E-14 1.2E-91 2.1E-25 2.7E-65
ac-LRout 6.5E-34 6.2E-34 1.8E-04 4.1E-54 1.8E-71 2.3E-73
ac-LRin-out 3.8E-213 3.3E-265 3.4E-12 5.8E-85 2.1E-21 1.0E-64

TABLE V. FriendFeed T-TEST ON THE PER-ITERATION PERFORMANCES.

Fagin evaluation Bpref evaluation
PR AC FB PR AC FB

LRin 1.3E-116 1.3E-103 2.6E-10 4.5E-195 5.9E-197 6.1E-10
LRout 8.5E-12 1.6E-101 1.5E-38 6.8E-252 1.3E-264 2.5E-271
LRin-out 6.0E-193 2.4E-166 2.1E-24 1.3E-298 2.1E-212 2.2E-116
ac-LRin 1.0E-195 1.0E-172 4.4E-13 5.0E-298 3.9E-189 7.8E-10
ac-LRout 2.6E-12 5.1E-88 1.3E-38 4.1E-99 5.9E-299 1.4E-282
ac-LRin-out 8.1E-63 1.3E-96 2.1E-25 8.3E-82 5.1E-226 1.5E-75

we fixed the Fagin parameter as k = 104 (which ensured a
larger overlap between the ranking lists to be compared) and
the Bpref parameter as l = 25 (for which |R| was always
smaller than |N |). Tables IV–V show the p-values resulting
from an unpaired two-tail t-test, in which the performance
scores obtained for each iteration by a ranking method w.r.t.
DD were regarded as the statistical samples, under the null
hypothesis of no difference in performance w.r.t. DD between
a LurkerRank method and a competing method. Note that in
all cases, the number of iterations (samples) was adequate
to perform a t-test (generally above 50). Looking at the two
tables and both F and Bpref evaluation, the p-values turned
out to be extremely low in most cases, thus giving a strong
evidence that the null hypothesis was always rejected, at 1%
significance level. This finding was useful to confirm that a
certain difference (actually, the improvement) in performance
between the LurkerRank methods and the competing ones, also
on FriendFeed for which relatively high Bpref scores were
observed in the previous analysis.

In the second stage of statistical testing, we analogously
performed a paired two-tail t-test in which the samples corre-
sponded to the F scores respectively obtained by two ranking
methods w.r.t. DD over the same randomly generated subgraph.
For each of the network datasets, we extracted 100 subgraphs,
each time starting from a randomly picked seed node and
roughly covering a fixed number of nodes (around 1/100 of the
original network size). This test was hence intended to stress
the ranking methods performing over a pool of subnetworks
having different characteristics from each other, and from
the whole original network as well; for instance, on Twitter ,
the subnetworks had average path length mean of 2.52 (0.86
stdev), and in/out-degree ratio mean of 0.07 (0.13 stdev)—
this might be explained because of the adopted approach of
breadth-first traversal of the network, which led to connect the
majority of nodes with a few source nodes having very high
out-degree. On Twitter , we observed a close behavior between
the LurkerRank methods (except LRout and ac-LRout) and
AC (around 0.19 F on average), and between PR and FB,
which however achieved a lower average F (0.029)—note
that k was still set to 104, hence very high for such network
sizes (i.e., around 200,000 nodes). In any case, i.e., for each
pair of LurkerRank method vs. competing method, the null
hypothesis of equal means was rejected even at 1% significance
level, since the p-values were ranging from 1.4E-3 to 2.8E-19.
Analogous final remarks were drawn for FriendFeed .



TABLE VI. TOP-20 Twitter USERS BY LURKING SCORE.

rank PR AC FB LRin
user score #rt user score #rt user score #rt user score #rt

1 B.O. 4.85E-03 17811 B.O. 1.59E-04 17811 D.W.S. 1.15E-05 0 R.F. 7.78E-06 0

2 W.F. 3.57E-03 1676 ZAI. 1.41E-04 10902 n.a. 6.35E-06 0 R.J. 7.72E-06 0

3 ZAP. 2.47E-03 8707 ZAP. 1.36E-04 8707 APA. 6.33E-06 0 R.M.K. 7.49E-06 0

4 TH. 1.86E-03 7169 AS. 1.35E-04 1172 T.S.C. 5.41E-06 1 B.B.P. 7.35E-06 0

5 L.E. 5.77E-04 683 M.M. 1.31E-04 7 n.a. 5.07E-06 0 TR. 6.84E-06 0

6 J.B. 5.64E-04 1248 W.F. 1.23E-04 1676 CON. 4.97E-06 0 MU. 6.04E-06 0

7 M.S. 4.87E-04 476 M.K. 1.20E-04 48 K.T. 4.95E-06 0 B.R. 5.37E-06 0

8 AS. 4.25E-04 1172 P.B. 1.10E-04 328 n.a. 4.78E-06 0 AZ. 5.30E-06 0

9 OH. 3.53E-04 1009 W.A. 1.07E-04 2814 S.M. 4.36E-06 0 O.L. 5.25E-06 0
10 H.T. 3.19E-04 43 C.B. 1.06E-04 11943 n.a. 4.06E-06 0 N.T. 5.20E-06 0
11 E.T. 3.17E-04 2435 EL. 1.04E-04 902 n.a. 3.83E-06 0 FR. 5.15E-06 0
12 SCH. 3.02E-04 3277 SCO. 1.03E-04 6970 M.P. 3.82E-06 0 D.W.S. 5.15E-06 0

13 RE. 2.93E-04 1467 WI. 1.02E-04 811 n.a. 3.81E-06 0 AW. 4.96E-06 0
14 H.S. 2.89E-04 1346 O.W. 1.02E-04 1803 n.a. 3.79E-06 0 O.B. 4.68E-06 0
15 M.M. 2.89E-04 7 T.B.B. 9.84E-05 102 M.E. 3.69E-06 0 N.C. 4.56E-06 0

16 ZAI. 2.85E-04 10902 T.S. 9.82E-05 74 B.B.P. 3.68E-06 0 D.P. 4.43E-06 0

17 SCO. 2.84E-04 6970 S.S. 9.72E-05 789 n.a. 3.68E-06 0 AU. 4.30E-06 0

18 M.K. 2.63E-04 48 M.W. 9.17E-05 363 n.a. 3.61E-06 0 EM. 4.28E-06 0

19 WI. 2.59E-04 811 H.R. 8.89E-05 750 n.a. 3.58E-06 0 DI. 4.12E-06 0

20 W.A. 2.56E-04 2814 A.K. 8.69E-05 1572 n.a. 3.57E-06 0 M.A. 3.91E-06 0

For privacy reasons, users’ names were replaced with their initials or abbreviations.

2) Qualitative evaluation: We investigated the meaning-
fulness of the rankings produced by LurkerRank methods,
and compared them to those produced by PageRank, alpha-
centrality, and Fair-Bets. Table VI reports the highest ranking
20 Twitter users for each method; additionally, the table also
reports the number of times a user was retweeted (denoted as
#rt). Among the LurkerRank methods, we selected LRin as it
was consistently found as one of the best performing methods.
Moreover, we left sink nodes out of consideration in order to
avoid biasing our evaluation with trivial lurkers.

By comparing the top-ranked lists, it is evident that LRin
behaved differently from the other algorithms, since it shared
just two users with FB (dark-grey shaded) and no users at all
with PR and AC. Interestingly, the LRin top-ranked list con-
tains only users who have never been retweeted; furthermore,
by retrieving the tweet post dates from Twitter, those users
were all found as quite longer-time users, as in fact they joined
Twitter much earlier (e.g., #8, #10 and #12 joined in 2007) than
most users in the AC and PR top-ranked lists. Conversely, in
the latter two lists most users have been significantly retweeted
although they joined later (e.g., 2009).

PR and AC showed a certain association, with ten users
in common (light-grey shaded). Most users in both the AC
and the PR lists however were retweeted hundreds times, and
hence they should not be considered as lurkers. Our hypothesis
of non-lurking for those users was fully confirmed as we
observed that those users’ retweets were actually spread over
a relatively short period of time (e.g., second half of 2009).
Moreover, AC and PR ranked the same user on top, who is
also the one having the highest number of retweets in the
lists; indeed, that user is a very influential person, and in fact
s/he has a followee/follower ratio much below 1: this would
indicate that both AC and PR were not able to correctly
handle this case (i.e., scoring it low enough), because their
performance would be more affected by highly influential
incoming links (i.e., followees)—which is a clear indication
of tendency to absorb valuable knowledge—rather than by the
number and type of followers. We also found other cases with
characteristics similar to #1, e.g., #12 in the PR list, #10 and
#14 in the AC list, and the common users “ZAP.” (#3 in both
lists) and “SCO.” (#17 in PR, #12 in AC).

As concerns FB, it was surprising to find that 15 out
of 20 top-ranked users actually refer to spammers (#4, a

fashion/cosmetic marketing spammer, #9, in advertising, and
#15, a porn spammer), or in general to suspended accounts
(#2-3, #5, #8, #10-11, #13-14, #17-20). Only #6, #12 and
#16 appear to be lurkers, which might be confirmed by their
high in/out-degree ratio coupled with a zero retweet-count.
By contrast, #1 is an art director and designer, and #7 refers
to an account actively used for academic advising purposes;
probably, the high number of followees (e.g., about 1800 for
#7) has misled the method. Therefore, like PR and AC, FB
might also fail to correctly recognize real lurkers.

Due to space limits, here we have presented only results
on Twitter , but we ensure that similar findings were obtained
on FriendFeed both in terms of evidence of the effectiveness
of LRin and relatively poor reliability of the other methods.

V. RELATED WORK

The topic of lurking has been long studied in social science
and recently has gained renewed interest in the computer-
human interaction community. [16] investigates relations be-
tween lurking and cultural capital, i.e., a member’s level
of community-oriented knowledge. Cultural capital is found
positively correlated with both the degree of active partici-
pation and, except for longer-time lurkers, with de-lurking.
[17] leverages the significance of conceptualizing the lurking
roles in relation to their boundary spanning and knowledge
brokering activities across multiple community engagement
spaces. The study proposed in [18] raises the opportunity of
rethinking of the nature of lurking from a group learning
perspective, whereby the engagement of intentional lurkers
is considered within the collective knowledge construction
activity. In [19], a set of statistical patterns is presented to
characterize a comparison between contributing actors and
lurkers across multiple communities, under the hypotheses
of personal trait, engagement, and social learning. Exploring
epistemological motivations behind lurking dynamics is the
main focus of the study in [20], which indeed reviews major
relevant literature on epistemic curiosity in the context of
online communities and provides a set of propositions on the
propensity to lurk and de-lurk. However, as with [17], the paper
only offers insights that might be useful to guide an empirical
evaluation of lurkers’ emotional traits.

To the best of our knowledge, there has been no study other
than ours that provides a formal computational methodology
for lurker ranking. The study in [21], which aims to develop
classification methods for the various SN actors (i.e., leaders,
spammers, associates, and lurkers), actually treats the lurking
problem marginally, and in fact lurking cases are left out of ex-
perimental evaluation. Similarly, [22] analyzes various factors
that influence lifetime of SN users, also distinguishing between
active and passive lifetime; however, analyzing passive lifetime
is made possible only when the user’s last login date is known,
which is a rarely available information.

VI. CHALLENGES AND FUTURE WORK

The inherent complexity of lurking would advise that more
information besides the network topology, certainly including
temporal as well as contextualization aspects, might be consid-
ered for an improved ranking of lurkers. Further developments
of the lurker ranking problem should hence take into account
the aspects discussed below.



Time-driven lurking: Users in a SN naturally evolve
over time playing different roles, thus showing a stronger or
weaker tendency toward lurking on different times. Temporal
dimension should be considered in terms of online access
frequency of the community members. Lurkers tend to have
unusual frequency of online presence, and hence any knowl-
edge on the average central tendency/variability of online
participation frequency of members in the community could
guide the identification of critical time intervals to reveal
lurking behaviors.

Context/Content-biased lurking: Lurking might also be
identified w.r.t. a particular context, since the same user node
can be involved in different aspects underlying the relation-
ships in the network. Example contexts might refer to the type
of resources exchanged, the topics discussed, the work tasks or
interests shared among the community members. This would
also suggest extensions of the lurking conceptualization to take
into account the content semantics of the data associated with
a selected context. For instance, by taking into account the
content of the postings, including the messages sporadically
posted by lurkers, the context-biased activity of a lurker would
be better understood.

In their life cycle, users get different skills and experiences,
and may change their interests. This clearly not also impacts
on the role a user may take but also on the strength of the
attachment the user has in relation to other users. Therefore,
context and time dimensions might be jointly considered to
determine which users may lurk. For instance, a lurking
analysis of the context-biased activity of a user (e.g., number of
postings) in function of her/his online access frequency would
help to get a more complete picture of the user’s engagement
level in the community.

Boundary-spanning lurking: We believe that a further
attractive option for conceptualizing lurking behaviors lies in
the theory of boundary-spanning and knowledge transfer: given
the very large scale of SNs and their heterogeneity in the type
of information exchanged and actors, connected components
are likely to be formed and dynamically change over time.
Therefore, some of the members that lay on the boundary of
a component may bridge over other components. As a result,
members who lurk inside a component may not lurk, or even
take on the role of experts, in other connected components.

It is also worth noting that combining topology with
temporal, context and content information would also help
understanding relations between lurkers and other SN actors.
While naturally interpreted as an inverse notion of influence,
lurking would actually seem quite unrelated to the other major
event in a SN, i.e., spamming, and in effect, personal dispo-
sitions and behaviors are totally different for the two types
of actors. However a lurker’s life-cycle could be somehow
affected by the presence of spammers in the SN. Hence we
raise a question whether existing solutions to spam detection
and trust analysis could support both the identification and
ranking of lurkers and eventually their delurking.

VII. CONCLUSION

We addressed the previously unexplored problem of rank-
ing lurkers in a SN. We introduced a topology-driven lurking
definition and proposed various lurker ranking methods, for

which we provided a complete specification in terms of the
well-known PageRank and alpha-centrality. We have been
positively impressed by results achieved on Twitter and Friend-
Feed by some of our lurker ranking methods, especially in
terms of significance and higher meaningfulness w.r.t. other
competing methods. Future directions of research have also
been issued.
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