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Abstract—Lurkers are silent members of a social network (SN)
who gain benefit from others’ information without significantly
giving back to the community. The study of lurking behaviors in
SNs is nonetheless important, since these users acquire knowledge
from the community, and as such they are social capital holders.
Within this view, a major goal is to delurk such users, i.e., to
encourage them to more actively be involved in the SN. Despite
delurking strategies have been conceptualized in social science
and human-computer interaction research, no computational
approach has been so far defined to turn lurkers into active
participants in the SN. In this work we fill this gap by presenting
a delurking-oriented targeted influence maximization problem
under the linear threshold (LT) model. We define a novel objective
function, in terms of the lurking scores associated with the
nodes in the final active set, and we show it is monotone and
submodular. We provide an approximate solution by developing
a greedy algorithm, named DEvOTION, which computes a k-
node set that maximizes the value of the delurking-capital-based
objective function, for a given minimum lurking score threshold.
Results on SN datasets of different sizes have demonstrated the
significance of our delurking approach via LT-based targeted
influence maximization.

Keywords—silent users, lurking, targeted influence maximiza-
tion, LurkerRank, participation and engagement in social networks

I. INTRODUCTION

All large-scale on-line social networks are characterized
by a “participation inequality” principle, i.e., a disequilibrium
between the niche of super contributors and the crowd of silent
users, which just observe ongoing discussions, read posts,
watch videos and so on. In other words, the real audience
of a SN does not actively contribute; rather, it lurks. A lurker
is hence a silent member of a SN who gains benefit from
others’ information and services without significantly giving
back to the community [3]. In this respect, a major goal is to
delurk such users, i.e., to develop a mix of strategies aimed
at encouraging lurkers to return their acquired social capital,
through a more active participation to the community life. This
has the important long-term effect of helping sustain the SN
over time with fresh ideas and perspectives.

Social science and human-computer interaction research
communities have widely investigated the main causes that
explain lurking behaviors. Lurking is often due to a subjective
reticence (rather than malicious motivations) to contribute
to the community wisdom; a lurker often simply feels that
gathering information by browsing is enough without the
need of being further involved in the community. Lurking

can be expected or even encouraged because it allows users
(especially newcomers) to learn or improve their understanding
of the etiquette of an online community [3]. Sun et al. [12]
have identified four types of factors related to lurking, namely:
environmental influence determined by the online community,
personal preference related to an individual’s personality, re-
lationships between the individual and the community, and
privacy/security considerations. By contrast, few suggestions
have been given about how to turn lurkers into partici-
pants/contributors. Delurking actions can be broadly catego-
rized into four types [12]: reward-based external stimuli (e.g.,
tangible or intangible rewards), encouragement information
(e.g., welcome statements, introduction to the netiquette rules),
improvement of the usability and learnability of the system,
and guidance from elders/master users to help lurkers become
familiar with the system as quickly as possible. As studied
in [1], the trustworthiness or credibility that lurkers perceive
with regard of some members of the community represents a
key psychological factor to persuade lurkers to change their
silent status. In addition, a further incentive for delurking
would be represented by a habit of the community of nurturing
newcomers and novices.

The above considerations prompted us to investigate an
effective computational approach to define a delurking strategy,
in which lurkers are persuaded to be more actively engaged in
the SN community by other users. Our key idea in this work
is to conceptualize a delurking approach under a graph-based
information diffusion model. Research on information diffusion
in SNs (cf. [5] for a recent survey) is well-established due to a
plethora of methods that have been developed in the last years,
mostly upon two seminal models, namely Independent Cascade
(IC) and Linear Threshold (LT) [8]. These assume that an
information diffusion process would unfold in a static, directed
graph, where each node can be “activated” or not (under a
progressive assumption) according to some rules. Intuitively,
the activation of a node means that a user is influenced by
other users so to “become aware of” or “adopt” a piece of
information.

In this work, we address a special case of the influence
maximization (IM) problem, namely targeted IM. In an IM
framework the general objective is to find a set of initially
activated users (also called seed users) which can maximize
the spread of information through the network ([8], [4], [10]).
In our instance of targeted IM, lurkers are regarded as the target
of the diffusion process and the goal is to find a set of nodes
capable of maximizing the likelihood of “activating” them. It



should be noted that there is a relatively small body of works
on IM that involves some notion of target of the diffusion
process and they all stem from perspectives different from ours.
More in detail, our proposed approach aims at maximizing the
probability of activating a target set which can be arbitrarily
large, by discovering a seed set which is neither fixed and
singleton (e.g., [7], [6], [17]) nor it has constraints related to
the topological closeness to a fixed initiator (e.g., [17]). Other
approaches (e.g., [9], [10], [18], [16]) can be considered as
related to targeted IM since they introduce in the diffusion
process dimensions concerning the users’ profiles; however,
our proposal does not make any assumption on the network
structure, nor it depends on user characterization based on
topic-biased or categorical distributions. While some analogy
could in principle be found between the notion of conformity
in [10] and the proposed one of lurker activation, our method
does not rely on sentiment analysis like [10] does.

It is worth emphasizing that all the aforementioned works
focus on the IC diffusion model, while we propose a targeted
IM problem under the LT model. We believe that a natural
motivation to use LT (rather than IC or IC-based models)
stands in the ability of this model to reflect the cumulative
effect of exposure to multiple sources of influence. This can
be profitably exploited to maximize the likelihood of changing
the status of a user into a more active role in the SN. We recall
that a node v can be influenced by each neighbor u according
to a weight b(u, v) such that

∑
u∈Nin(v) b(u, v) ≤ 1, where

N in(v) is the in-neighbor set of node v. At the very beginning
of the diffusion process, each node v is assigned a threshold
uniformly at random from [0, 1]. This represents the weighted
fraction of v’s neighbors that must become active in order for v
to become active itself. Intuitively, the higher is this threshold,
the harder will be the task of enrolling v in a new trend, since
the total influence weight must exceed its threshold.

Our key intuition is that the outcome of a diffusion process
can actually lead to the delurking of silent users, provided
that the information to be diffused towards the target lurkers
represents a well-established delurking action. The activation
of nodes regarded as lurkers can be seen as delurking those
users. To this end, existing lurker ranking algorithms [15],
[13] can profitably be exploited to mine lurking behaviors
in the network, and hence to associate users with a value
(lurking score) indicating her/his lurking status. Therefore, the
lurking score of a user would represent the gain deriving from
delurking that user. Our main contributions are summarized as
follows:

— We propose the first computational framework that
addresses the problem of delurking in social networks.

— We define the delurking-oriented targeted influence
maximization problem. A key novelty in the formulated opti-
mization problem is the objective function, which is defined in
terms of the cumulative amount of the lurking scores associated
with the nodes in the final active set, or delurking capital.

— Our delurking-oriented targeted IM problem shares
the computational intractability with classic IM problems.
However, since the proposed objective function is shown to
be monotone and submodular under the LT model, we provide
a greedy algorithm (with typical 1 − 1/e − ε approximation
ratio), dubbed DEvOTION, which computes a k-node set that

maximizes the delurking capital in the network, for a given
minimum lurking threshold. We also point out that, to the best
of our knowledge, our approach is the first to address a targeted
IM problem under the LT diffusion model.

— We evaluate DEvOTION over SN datasets of different
characteristics and sizes, assessing its performance in terms of
estimation of the delurking capital, distribution of target nodes
in the final active set, and execution time.

II. DELURKING-ORIENTED TARGETED INFLUENCE
MAXIMIZATION

A. Problem statement

Let G0 = 〈V, E〉 be the directed graph representing a SN,
with set of nodes V and set of edges E . According to the
lurking graph models given in [15], [13], any edge (u, v)
means that v is is “consuming” or “receiving” information
from u. Let G = G0(b, `) = 〈V, E , b, `〉 denote a directed
weighted graph representing the information diffusion graph
associated with the social graph G0, where b : E → R∗
is an edge weighting function, and ` : V → R∗ is a node
weighting function. Such weighting functions rely on a pre-
existing solution of a LurkerRank instance applied to the
social network graph G0 = 〈V, E〉 [15], [13]. We shall provide
formal details about these functions in Section II-C, while here
we give intuition into them. For any edge (u, v), the weight
b(u, v) indicates how much node u has contributed to the v’s
lurking score calculated by LurkerRank, which resembles a
measure of “influence” produced by u to v. Also, the node
weight `(v) indicates the status of v as lurker, such as the
higher the lurker ranking score of v the higher should be `(v).

We denote with LS ∈ [0, 1] a threshold value that indicates
the minimum lurking score that a node in the network must
have in order to be regarded as a target node. Moreover, given
any seed set S ⊆ V , we denote with µ(S) the final active set,
i.e., the set of nodes that are active at the end of the diffusion
process starting from S.

Upon the above defined quantities, we introduce a measure
that will be essential to the definition of our targeted IM
problem. This measure, we call delurking capital cumulated
via S, is proportional to the amount of the lurking scores over
all target nodes that are activated by the seed set S.

Definition 1: Given a set S ⊆ V , the delurking capital
DC(µ(S)) associated with the final active set µ(S) ⊆ V is
defined as:

DC(µ(S)) =
∑

v∈µ(S)\S ∧ `(v)≥LS

`(v) (1)

Note that in Eq. 1 we do not consider nodes that belong to the
seed set S. The ratio behind this choice is that the selection
of the seed set should not be biased by nodes with highest
lurking scores; this will be made clear next in the definition
of our objective function, which in fact relies on DC(µ(S)).

We now formally define our proposed problem of
delurking-oriented targeted influence maximization. After-
wards, we discuss the diffusion model and properties of
the proposed objective function, and we end this section by
presenting our developed algorithm.
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(a) µ(S) with S = {a} (b) µ(S) with S = {g}

Fig. 1. Final active sets (filled circles) for different seeds. Edge weights
(values in blue) and node weights (values in green) are computed by functions
b and `. To avoid cluttering of the figure, the node activation thresholds used
by LT model here coincide with the node weights. (Best viewed in color).

Definition 2: Delurking-oriented Targeted Influence
Maximization Problem. Given G = 〈V, E , b, `〉, a diffusion
model on G, a budget k, and a lurking threshold LS, find a
seed set S ⊆ V with |S| ≤ k of nodes (users) such that, by
activating them, the final active set µ(S) ⊆ V will have the
maximum delurking capital:

S = argmax
S′⊆V s.t. |S′ |≤k

DC(µ(S
′
)) (2)

B. Properties of the proposed objective function

The objective function of the problem in Eq. 2 differs
from the ones in classic IM as it is defined in terms of the
cumulative amount of the scores associated with the activated
(target) nodes, i.e., DC(µ(S)), instead of the size of the final
active set (|µ(S)|, commonly known as spread).

Example in Fig. 1 helps us motivate the different outcome
obtained via LT for the classic IM and the proposed targeted
IM based on LS. We assume for the sake of simplicity of the
example that the node weights correspond to both the node
activation thresholds (used in the LT model) and the lurking
scores (`). As shown on the left of the figure, the seed set S =
{a} is the best one to accomplish the influence maximization
task as it causes four nodes to be activated during the process.
However, the optimal seed set can be different in our setting
of targeted IM: for example, if we set LS = 0.6, then the
best seed set is S = {g}. Indeed, node h is the only one with
lurking score (`(h)) greater than 0.6. This node is eventually
activated (at the second step of the diffusion process) by the
seed g due to the influence exerted jointly with c (which is in
turn activated by g at the first step of the process).

The problem in Def. 2 preserves the complexity of the IM
problem and, as a result, it is computationally intractable, i.e.,
it is NP-hard. However, as for the classic IM problem, a greedy
solution can be designed provided that the natural diminishing
property holds for the considered problem. It is well-known
that for many diffusion models, including LT, the function
σ(A) mapping any subset A ⊆ V of nodes to the size of the
final active set µ(A) satisfies monotonicity and submodularity
by exploiting the equivalent live-edge graph model [8]. Upon
this, we next provide a theoretical result that proves that the
function DC(µ(A)) mapping each active set µ(A) ⊆ V to its
overall delurking capital, is monotone and submodular, for any
LS ∈ [0, 1].

Proposition 1: The delurking capital function defined in
Eq. 1 is monotone and submodular under the LT model.

Proof sketch. By exploiting the equivalence between LT and
the live-edge model shown in [8], for any set A ⊆ V we can
express the expected delurking capital of the final active set
µ(A) in terms of reachability under the live-edge graph:

DC(µ(A)) =
∑
∀X

Pr(X)DC(RX(A)) (3)

where Pr(X) is the probability that a hypothetical live-edge
graph X is selected from all possible live-edge graphs, and
RX(A) is the set of nodes that are reachable in X from
A. Since for all v ∈ V , `(v) is a non-negative value,
DC(RX(A)) is clearly monotone and submodular. Thus, the
expected delurking capital under LT is a non-negative linear
combination of monotone submodular functions, and hence it
is monotone and submodular. �

As a consequence of the above result, a greedy approach
can be applied in order to provide an approximate solution for
the problem in Def. 2. We shall present it in Section II-D.

C. Modeling the information diffusion graph

As anticipated in Section II-A, the node weight `(v) should
reflect the status of v as lurker, such as the higher the lurker
ranking score of v the higher should be `(v). We define the
node weighting function `(·) upon scaling and normalizing the
stationary distribution produced by the LurkerRank algorithm
over G0 [15], [13]. The scaling compensates for the fact
that the lurking scores produced by LurkerRank, although
distributed over a significantly wide range (as reported in [13]),
might be numerically very low (e.g., order of 1e-3 or below).
Moreover, we introduce a small smoothing constant in order
to avoid that the highest lurking scores are mapped exactly to
1. Formally, for each node v ∈ V , we define the node lurking
value `(v) ∈ [0, 1) as follows:

`(v) =
π̃v −minπ

(maxπ −minπ) + επ
(4)

where π̃ denotes the stationary distribution of the lurker
ranking scores (π) divided by the base-10 power of the order
of magnitude of the minimum value in π, π̃v is the value of
π̃ corresponding to node v, maxπ = maxu∈V π̃u, minπ =
minu∈V π̃u, and επ is a smoothing constant proportional to
the order of magnitude of the maxπ value.

In order to define the edge weights so that they express
a notion of strength of influence from a node to another (as
normally required in an information diffusion model), we again
exploit information derived from the ranking solution obtained
by LurkerRank as well as from the structural properties of the
social graph. Our key idea is to calculate the weight on edge
(u, v) ∈ E proportionally to the fraction of the original lurking
score of v given by its in-neighbor u [15], [13]:

b0(u, v) =

 ∑
w∈Nin(v)

out(w)

in(w)
πw

−1 out(u)
in(u)

πu (5)

The above edge weight definition has however two limita-
tions: (i) it is independent of the v’s lurking score, therefore
the contribution of node u will be the same value for each
of its out-neighbors with identical set of in-neighbors; (ii)



Algorithm 1 DElurking Oriented Targeted Influence maxi-
mizatiON - DEvOTION
Input: A graph G = 〈V, E, b, `〉, a budget (seed set size) k, a lurking

threshold LS ∈ [0, 1], a path pruning threshold η ∈ [0, 1].
Output: Seed set S.
1: S ← ∅
2: T ← V {nodes that can reach target nodes}
3: TargetSet← ∅ {stores the target nodes at current iteration}
4: for u ∈ V do
5: if `(u) ≥ LS then
6: TargetSet← TargetSet ∪ {u}
7: end if
8: end for
9: while |S| < k do

10: bestSeed, bestSeed.DC ← −1 {keeps track of the node with the
highest spread}

11: for u ∈ T \ S do
12: u.DC ← 0 {initializes each node’s spread to zero}
13: end for
14: T ← ∅;
15: for u ∈ TargetSet \ S do
16: backward(〈u〉, 1, `(u))
17: end for
18: if bestSeed 6= −1 then
19: S ← S ∪ {bestSeed}
20: else
21: break
22: end if
23: end while
24: return S

25: procedure backward(P, pp, score)
26: u← P.last()
27: T ← T ∪ {u}
28: while v ∈ N in(u) ∧ v 6∈ S ∪ P.nodeSet() do
29: pp← pp× b(v, u) {updates the path probability}
30: if pp ≥ η then
31: v.DC ← v.DC + pp× score
32: if v.DC > bestSeed.DC then
33: bestSeed← v {sets the best seed node as v}
34: end if
35: backward(P.append(v), pp, score)
36: end if
37: end while

the constraint on the sum of incoming edge weights will be
strictly equal to 1, which is not necessarily required. Therefore,
we define the actual edge weighting function b(·) upon a
modification of Eq. 5 according to the above remarks:

b(u, v) = b0(u, v)× e`(v)−1 (6)

Equation 6 fulfills the requirement
∑
u∈Nin(v) b(u, v) ≤ 1,

moreover it takes into account `(v) such that the resulting
weight on (u, v) will be decreased (with exponential smooth-
ing) for higher `(v). This can be explained since the more a
node acts as a lurker, the more active in-neighbors are needed
to activate that node.

D. The DEvOTION algorithm

Algorithm 1 shows our proposed greedy method,
named DEvOTION (stands for DElurking Oriented Targeted
Influence maximizatiON). Following the lead of the study
in [4], DEvOTION exploits as well the search for shortest
paths in the diffusion graph, however in a backward fashion.
Along with the information diffusion graph G, the budget
integer k, and the minimum lurking score LS, DEvOTION
takes in input a real-valued threshold η. This parameter is used

to control the size of the neighborhood within which paths are
enumerated: in fact, the majority of influence can be captured
by exploring the paths within a relatively small neighborhood;
note that for higher η values, less paths are explored (i.e.,
paths are pruned earlier) leading to smaller runtime but with
decreased accuracy in spread estimation.

The key idea behind DEvOTION is to perform a backward
visit of the graph starting from the nodes identified as target
(i.e., the nodes u with `(u) ≥ LS). To this end, all nodes
are initially examined to compute TargetSet (Lines 4-8). In
order to yield a seed set S of size at most k, DEvOTION works
as follows. During each iteration of the main loop (Lines 9-
19), DEvOTION computes the set T of nodes that reach the
target ones and keeps track, into the variable bestSeed, of
the node with the highest marginal gain (i.e., delurking capital
DC). This is found at the end of each iteration upon calling
the subroutine backward over all nodes in TargetSet that
do not belong to the current seed set S (Lines 15-17). This
subroutine takes a path P , its probability pp, and the lurking
score of the end node in the path (i.e., a target node), and
extends P as much as possible (i.e., as long as pp is not
lower than η). Initially (Line 16), a path is formed by one
target node, with probability 1. Then (Lines 28-37), the path
is extended by exploring the graph backward, adding to it
one, unexplored in-neighbor v at time, in a depth-first fashion.
The path probability is updated (Line 29) according to the
LT-equivalent “live-edge” model [4], [8], and so the delurking
capital (Line 31). The process is continued until no more nodes
can be added to the path.

Consider the example in Fig. 1, where the target set is
{h}. By applying DEvOTION, assuming for simplicity to set
k = 1 and η = 0, the target node can be reached via a (with
a.DC = [0.01×0.6]×0.7), c (with c.DC = 0.6×0.7), and g
(with g.DC = [0.35+0.5×0.6]×0.7). Node g has the highest
DC, since it has the largest chance of success (0.35+0.5×0.6),
and hence it is chosen as seed node.

Note that moving backward from the target nodes has two
positive side effects: indeed, as all the paths starting from
nodes that cannot reach any target are ignored, we get a further
path pruning that reduces DEvOTION running time without
affecting its accuracy. It is also worth noting that (i) if LS is set
to zero and the node lurking values are uniformly distributed,
our problem reduces to classic IM problem, and (ii) if the
target set includes a single node, i.e. |TargetSet| = 1, our
problem is equivalent to a single-target IM problem.

Estimating delurking capital. The overall delurking
capital and influence weight received by the target nodes, given
a seed set, is estimated by using a variant of the SimPath-
Spread procedure [4], which has been adapted to account
for our objective function. More in detail, the DC spread is
updated according to the lurking scores of the target nodes
reached by the seed set S and the probability of the considered
paths. Moreover, for each node u belonging to the target set, its
total influence weight is computed by summing up the weight
of each scanned path ending in it.

III. EXPERIMENTAL EVALUATION

A. Data and evaluation methodology

We used the publicly available Google+, FriendFeed and
Instagram datasets to conduct our analysis. Google+ (about
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Fig. 2. Delurking capital in function of k and η, with LS-perc set to (a)
5%, (b) 10%, and (c) 25%, on Instagram .

100k nodes, 13.5M links) dataset was studied in [11], Friend-
Feed (about 500K nodes, 19.5M links) refers to the latest
(2010) version of the dataset studied in [2], while Instagram
(about 55K nodes, 1M links) is our dump studied in [14].1

We will use symbol LS-perc to denote a percentage value
that determines the setting of LS such that the selected target
set corresponds to the top-LS-perc of the distribution of node
lurking scores (` values). We will show results that correspond
to LS-perc ∈ {5%, 10%, 25%}. To implement the node and
edge weighting functions (i.e., ` and b), we used the stationary
distribution produced by the in-neighbors-driven PageRank-
based LurkerRank algorithm on the social network graph.

We studied the impact of parameters η, k and LS-perc on
the proposed model. Moreover, we compared DEvOTION with
three baseline algorithms, dubbed Random, LargestDegree
and bottom-LR baselines: Random calculates the delurking
capital obtained for 100 randomly selected seed sets for each
value of k, then the final delurking capital is averaged over
the number of random extractions; LargestDegree selects,
for each value of k, the k nodes in the graph with the largest
out-degree; bottom-LR algorithm selects, for each value of k,
the k nodes with the lowest lurking value, i.e., the k most
active users in the network.2

B. Results

Impact of parameters. We evaluated the performance of
DEvOTION in terms of delurking capital obtained by varying
all three parameters involved, i.e., k, LS-perc, η. Focusing
first on the impact of η, we varied it from 1e-03 to 0 (no
path pruning). Figure 2 shows results obtained on Instagram ,
for different settings of η. It can be noted that no significant
effects on DC are yielded by varying η and keeping fixed the
other two parameters; only for a relatively large target set (e.g.,
LS-perc = 25%) and k ≥ 30, we observe a slight reduction
in DC for η = 1e-03. This indicates that no significant gain
in spread (DC) is obtained for lower values of η. This fact
achieves particular importance when it is coupled with the
time performance results shown in Fig. 6: several orders of
magnitude in the runtime are saved when η > 0, and from this
perspective η = 1e-03 is also to be preferred to η = 1e-04.
Hereinafter in our discussion, unless otherwise specified, we
assume that η is set to 1e-03.

Concerning the other two parameters, as expected, the
delurking capital increases with the size of the target set

1More details on the evaluation data are available at
http://uweb.dimes.unical.it/tagarelli/devotion/.

2Experiments were carried out on an Intel Core i7-3960X CPU @3.30GHz,
64GB RAM machine. All algorithms were written in Python.
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Fig. 3. Delurking capital in function of k for varying LS-perc, on Google+
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Fig. 5. Delurking capital in function of k and LS-perc: (a) Random, (b)
LargestDegree, and (c) bottom-LR baselines, on Instagram .

(LS-perc) and the size of the seed set (k). The increasing trend
with k is clearer for higher LS-perc (e.g., for LS-perc = 25%,
DC ' 2180 with k = 5 up to DC ' 3359 for k = 25).

Figure 3 shows the DC performance on the largest datasets.
Besides the obviously higher values of DC than on Instagram ,
the growing trend of DC in function of k is confirmed and
even more evident for higher LS-perc on both FriendFeed and
Google+ . This would indicate that the larger the network size,
the higher the impact of k on the delurking capital obtained.
More importantly, we observe on all datasets that for smaller
target sets (i.e., LS-perc ≤ 10%), a significant fraction of
delurking capital can be achieved using low k.

We also investigated how the target nodes are distributed
in the final active set, for varying k and LS-perc. To this
aim, we analyzed the density distributions pdf(x) with variable
x modeling the vector of total influence weights associated
with the nodes in the final active set. Figure 4 shows that the
plotted distributions are generally roughly bimodal, for every
k and LS-perc. The two major peaks of each distribution are
located at a low regime (i.e., 0.0 / x / 0.4) and mid-high
regime (i.e., 0.6 / x / 0.8) of total influence weights. More
specifically, while the density at the low regimes always shows
a significant variance and increases with higher LS-perc, the
opposite situation is observed for mid-high regimes. The latter
finding is important as it implies that a high total influence
(within 0.9, for LS-perc = 5%, and 0.7, for LS-perc > 5%)
is always achieved by a large (for LS-perc=5%) or roughly
half (for LS-perc=25%) fraction of the target set.

Comparison with baselines. Figure 5 shows the delurk-
ing capital obtained by the three baselines in function of k
and LS-perc, on Instagram . Both Random and bottom-LR
methods achieve very low DC (up to 10.5 for the Random,
and 37.9 for bottom-LR, with LS-perc = 25%), although the
growth in function of k evolve with different trends. In the
Random case, the delurking capital follows a roughly linear
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Fig. 4. Density distributions of total influence weight, for varying k, with LS-perc set to (a) 5%, (b) 10%, and (c) 25%, on Instagram . (Best viewed in color).
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Fig. 6. Execution time of DEvOTION in function of k, with LS-perc = 5%
and for varying η, on Instagram . The inset shows the overall results that
include η = 0, while the main plot zooms in to focus on η 6= 0.

trend by increasing k, except for some fluctuation naturally
due to the random selection of the seed set. By contrast,
bottom-LR exhibits a behavior that is nearly constant with
respect to k; this is actually not surprising since choosing
globally low-ranked lurkers (i.e., users regarded as highly
active in the SN), does not ensure a good influence spread
towards a selected target set, which can mainly be ascribed to
connectivity features of the SN. The best performing baseline
is LargestDegree, which shows a rapidly increasing ramp
for k ≈ 15, reaching DC values that are of similar order of
magnitude as DEvOTION although always significantly lower
than our algorithm. Moreover, even though peaking seeds with
high out-degree might increase the probability of spreading the
influence towards the target set, the reachability of target nodes
is not guaranteed, like for the other baselines.

IV. CONCLUSION

We proposed the first computational approach to delurking
silent users in SNs. We defined a novel targeted IM problem
in which the objective function to be maximized is defined
in terms of delurking capital of the target users. We proved
that the proposed objective function is monotone and submod-
ular, by using the LT-equivalent live-edge graph model, and
developed an approximate algorithm, DEvOTION, to solve the
problem under consideration. Our algorithm has shown to be
robust w.r.t. the pruning of paths to be explored in the graph.
A significant fraction of delurking capital can be achieved
already with a small seed set, even for large network datasets.
DEvOTION is also robust w.r.t. the size of both the seed set
and target set in terms of total influence received by the target
nodes. We finally point out that the proposed approach can

easily be generalized to deal with other targeted IM scenarios.
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