
Termination Analysis of Logic Programs

Sergio Greco and Cristian Molinaro

DIMES, University of Calabria, Italy

July 25th, 2015

Logic Program Termination Analysis

1. What kind of Logic Programs?
1 Rules with function symbols.
2 Existential rules.

Many applications in knowledge representation, logic programming,
and databases: answer set programming, ontological query
answering, data exchange, etc.

2. Termination Analysis

The evaluation of such programs might not terminate.
Establishing termination is undecidable.
Termination Criteria: sufficient conditions guaranteeing
termination.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 2 / 184

Logic Program Termination Analysis

1. What kind of Logic Programs?
1 Rules with function symbols.
2 Existential rules.

Many applications in knowledge representation, logic programming,
and databases: answer set programming, ontological query
answering, data exchange, etc.

2. Termination Analysis

The evaluation of such programs might not terminate.
Establishing termination is undecidable.

Termination Criteria: sufficient conditions guaranteeing
termination.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 2 / 184

Logic Program Termination Analysis

1. What kind of Logic Programs?
1 Rules with function symbols.
2 Existential rules.

Many applications in knowledge representation, logic programming,
and databases: answer set programming, ontological query
answering, data exchange, etc.

2. Termination Analysis

The evaluation of such programs might not terminate.
Establishing termination is undecidable.
Termination Criteria: sufficient conditions guaranteeing
termination.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 2 / 184

Outline

Part I: Logic Programs with Function Symbols
I Syntax and Semantics
I Termination Criteria

Part II: Existential Rules
I The Chase and the Termination Problem
I Termination Criteria
I Adding EGDs

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 3 / 184

Part I

Logic Programs with Function Symbols

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 4 / 184

Context and Motivations

Function Symbols
I Make modeling easier and the resulting encodings more readable

and concise.
I Increase the expressive power.
I Allow us to overcome the inability of handling infinite domains.

Problem: Program evaluation might not terminate and it is
undecidable whether the evaluation terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 5 / 184

Context and Motivations

Function Symbols
I Make modeling easier and the resulting encodings more readable

and concise.
I Increase the expressive power.
I Allow us to overcome the inability of handling infinite domains.

Problem: Program evaluation might not terminate and it is
undecidable whether the evaluation terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 5 / 184

Top-down Evaluation
Apt, Bezem. Acyclic programs. ICLP (1990).
Bol, Apt, Klop. An analysis of loop checking mechanism for logic programs. TCS
(1991).
Sagiv. A termination test for logic programs. ICLP (1991).
Apt, Pedreschi. Reasoning about termination of pure Prolog programs. I&C (1993).
De Schreye, Decorte. Termination of logic programs: The never-ending story. JLP
(1994).
Lindenstrauss, Sagiv. Automatic termination analysis of logic programs. ICLP
(1997).
Codish, Taboch. A semantic basis for the termination analysis of logic programs.
JLP (1999).
Ohlebusch. Termination of logic programs: Transformational methods revisited.
AAECC (2001).
Pedreschi, Ruggieri, Smaus. Classes of terminating logic programs. TPLP (2002).
Bonatti. Reasoning with infinite stable models. AIJ (2004).
Serebrenik, De Schreye. On termination of meta-programs. TPLP (2005).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 6 / 184

Top-down Evaluation
Bruynooghe, Codish, Gallagher, Genaim, Vanhoof. Termination analysis of logic
programs through combination of type-based norms. ACM TOCL (2007).
Nguyen, Giesl, Schneider-Kamp, De Schreye. Termination analysis of logic
programs based on dependency graphs. LOPSTR (2007).
Baselice, Bonatti, Criscuolo. On finitely recursive programs. TPLP (2009).
Schneider-Kamp, Giesl, Nguyen. The dependency triple framework for termination
of logic programs. LOPSTR (2009).
Schneider-Kamp, Giesl, Serebrenik, Thiemann. Automated termination proofs for
logic programs by term rewriting. ACM TOCL (2009).
Nishida, Vidal. Termination of narrowing via termination of rewriting. Appl. Algebra
Eng. Commun. Comput. (2010).
Schneider-Kamp, Giesl, Stroder, Serebrenik, Thiemann. Automated termination
analysis for logic programs with cut. TPLP (2010).
Eiter, Simkus. FDNC: Decidable nonmonotonic disjunctive logic programs with
function symbols. ACM TOCL (2010).
Voets, De Schreye. Non-termination analysis of logic programs with integer
arithmetics. TPLP (2011).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 7 / 184

Bottom-up Evaluation
Shmueli. Decidability and Expressiveness of Logic Queries. PODS (1987).
Ramakrishnan, Bancilhon, Silberschatz. Safety of Recursive Horn Clauses With
Infinite Relations. PODS (1987).
Kifer, Ramakrishnan, Silberschatz. An Axiomatic Approach to Deciding Query
Safety in Deductive Databases. PODS (1988).
Krishnamurthy, Ramakrishnan, Shmueli. A framework for testing safety and
effective computability. SIGMOD (1988), JCSS (1996).
Chomicki. A decidable class of logic programs with function symbols. TR 1990.
Chomicki, Imielinski. Finite representation of infinite query answers. TODS (1993).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 8 / 184

Bottom-up Evaluation
Syrjanen. Omega-restricted logic programs. LPNMR (2001).
Gebser, Schaub, Thiele. Gringo : A new grounder for answer set programming.
LPNMR (2007).
Calimeri, Cozza, Ianni, Leone. Computable Functions in ASP: Theory and
Implementation. ICLP (2008).
Lierler, Lifschitz. One more decidable class of finitely ground programs. ICLP
(2009).
Greco, Spezzano, Trubitsyna. On the Termination of Logic Programs with Function
Symbols. ICLP (2012)
Calautti, Greco, Trubitsyna. Detecting decidable classes of finitely ground logic
programs with function symbols. PPDP (2013).
Greco, Molinaro, Trubitsyna. Logic programming with function symbols: Checking
termination of bottom-up evaluation through program adornments. TPLP (2013).
Greco, Molinaro, Trubitsyna. Bounded Programs: A New Decidable Class of Logic
Programs with Function Symbols. IJCAI (2013).
Calautti, Greco, Molinaro, Trubitsyna. Checking Termination of Logic Programs with
Function Symbols through Linear Constraints. RuleML (2014).
Calautti, Greco, Spezzano, Trubitsyna. Checking Termination of Bottom-Up
Evaluation of Logic Programs with Function Symbols. TPLP (2014).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 9 / 184

Top-down vs. Bottom-up Evaluation

Example

p(X)← p(X).

Non-terminating top-down evaluation.
Completely harmless under bottom-up evaluation.

We consider bottom-up evaluation.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 10 / 184

Top-down vs. Bottom-up Evaluation

Example

p(X)← p(X).

Non-terminating top-down evaluation.
Completely harmless under bottom-up evaluation.

We consider bottom-up evaluation.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 10 / 184

Bottom-up Evaluation

Example

len([a,b,c],0).
len(Tail,s(N))← len(list(Head,Tail),N).

Bottom-up evaluation:

len([b,c],s(0)) ← len([a,b,c],0) yields len([b,c],s(0))
len([c],s(s(0))) ← len([b,c],s(0)) yields len([c],s(s(0)))
len([],s(s(s(0)))) ← len([c],s(s(0))) yields len([],s(s(s(0))))

Fixpoint, the evaluation TERMINATES.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 11 / 184

Bottom-up Evaluation

Example

len([a,b,c],0).
len(Tail,s(N))← len(list(Head,Tail),N).

Bottom-up evaluation:

len([b,c],s(0)) ← len([a,b,c],0) yields len([b,c],s(0))

len([c],s(s(0))) ← len([b,c],s(0)) yields len([c],s(s(0)))
len([],s(s(s(0)))) ← len([c],s(s(0))) yields len([],s(s(s(0))))

Fixpoint, the evaluation TERMINATES.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 11 / 184

Bottom-up Evaluation

Example

len([a,b,c],0).
len(Tail,s(N))← len(list(Head,Tail),N).

Bottom-up evaluation:

len([b,c],s(0)) ← len([a,b,c],0) yields len([b,c],s(0))
len([c],s(s(0))) ← len([b,c],s(0)) yields len([c],s(s(0)))

len([],s(s(s(0)))) ← len([c],s(s(0))) yields len([],s(s(s(0))))

Fixpoint, the evaluation TERMINATES.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 11 / 184

Bottom-up Evaluation

Example

len([a,b,c],0).
len(Tail,s(N))← len(list(Head,Tail),N).

Bottom-up evaluation:

len([b,c],s(0)) ← len([a,b,c],0) yields len([b,c],s(0))
len([c],s(s(0))) ← len([b,c],s(0)) yields len([c],s(s(0)))
len([],s(s(s(0)))) ← len([c],s(s(0))) yields len([],s(s(s(0))))

Fixpoint, the evaluation TERMINATES.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 11 / 184

Bottom-up Evaluation

Example

len([a,b,c],0).
len(Tail,s(N))← len(list(Head,Tail),N).

Bottom-up evaluation:

len([b,c],s(0)) ← len([a,b,c],0) yields len([b,c],s(0))
len([c],s(s(0))) ← len([b,c],s(0)) yields len([c],s(s(0)))
len([],s(s(s(0)))) ← len([c],s(s(0))) yields len([],s(s(s(0))))

Fixpoint, the evaluation TERMINATES.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 11 / 184

Bottom-up Evaluation

Example

nat(0).
nat(s(X))← nat(X).

Bottom-up evaluation:

nat(s(0)) ← nat(0) yields nat(s(0))

nat(s(s(0))) ← nat(s(0)) yields nat(s(s(0)))
nat(s(s(s(0)))) ← nat(s(s(0))) yields nat(s(s(s(0))))

...

The evaluation does NOT terminate.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 12 / 184

Bottom-up Evaluation

Example

nat(0).
nat(s(X))← nat(X).

Bottom-up evaluation:

nat(s(0)) ← nat(0) yields nat(s(0))
nat(s(s(0))) ← nat(s(0)) yields nat(s(s(0)))

nat(s(s(s(0)))) ← nat(s(s(0))) yields nat(s(s(s(0))))
...

The evaluation does NOT terminate.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 12 / 184

Bottom-up Evaluation

Example

nat(0).
nat(s(X))← nat(X).

Bottom-up evaluation:

nat(s(0)) ← nat(0) yields nat(s(0))
nat(s(s(0))) ← nat(s(0)) yields nat(s(s(0)))
nat(s(s(s(0)))) ← nat(s(s(0))) yields nat(s(s(s(0))))

...

The evaluation does NOT terminate.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 12 / 184

Termination Criteria

(Decidable) Sufficient conditions guaranteeing the bottom-up
evaluation termination.
The use of function symbols is restricted.

“Terminating” Programs
We say that a program P is terminating iff the evaluation of P ∪ D
terminates for every finite set of facts D.

Termination Criteria
Define a decidable condition C such that for every program P

P satisfies C ⇒ P is terminating.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 13 / 184

Termination Criteria

(Decidable) Sufficient conditions guaranteeing the bottom-up
evaluation termination.
The use of function symbols is restricted.

“Terminating” Programs
We say that a program P is terminating iff the evaluation of P ∪ D
terminates for every finite set of facts D.

Termination Criteria
Define a decidable condition C such that for every program P

P satisfies C ⇒ P is terminating.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 13 / 184

Termination Criteria

ω-restricted programs [Syr01]
λ-restricted programs [GST07]
Finite domain programs [CCIL08]
Argument-restricted programs [LL09]
Safe and Γ-acyclic programs [CGST14]
Mapping-restricted programs [CGT13]
Bounded programs [GMT13b]
Rule- and cycle-bounded programs [CGMT14]
Program Adornment technique [GMT13a]

Size-restricted programs, IJCAI 2015, talk on Wed 29th afternoon!

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 14 / 184

Termination Criteria

ω-restricted programs [Syr01]
λ-restricted programs [GST07]
Finite domain programs [CCIL08]
Argument-restricted programs [LL09]
Safe and Γ-acyclic programs [CGST14]
Mapping-restricted programs [CGT13]
Bounded programs [GMT13b]
Rule- and cycle-bounded programs [CGMT14]
Program Adornment technique [GMT13a]
Size-restricted programs, IJCAI 2015, talk on Wed 29th afternoon!

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 14 / 184

Syntax: Datalog with Function Symbols

Definition
We are given (pairwise disjoint) sets of constants, variables,
function symbols (with arity > 0), and predicates (with arity ≥ 0).

A term is either a constant, a variable, or of the form f (t1, . . . , tm),
where f is a function symbol of arity m and the ti ’s are terms.
An atom is of the form p(t1, . . . , tn), where p is a predicate of arity
n and the ti ’s are terms.
A (Datalog) rule is of the form

A0︸︷︷︸
head

← A1, . . . ,An︸ ︷︷ ︸
body

where n ≥ 0 and the Ai ’s are atoms.
A (Datalog) program is a finite set of Datalog rules.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 15 / 184

Syntax: Datalog with Function Symbols

Definition
We are given (pairwise disjoint) sets of constants, variables,
function symbols (with arity > 0), and predicates (with arity ≥ 0).

A term is either a constant, a variable, or of the form f (t1, . . . , tm),
where f is a function symbol of arity m and the ti ’s are terms.

An atom is of the form p(t1, . . . , tn), where p is a predicate of arity
n and the ti ’s are terms.
A (Datalog) rule is of the form

A0︸︷︷︸
head

← A1, . . . ,An︸ ︷︷ ︸
body

where n ≥ 0 and the Ai ’s are atoms.
A (Datalog) program is a finite set of Datalog rules.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 15 / 184

Syntax: Datalog with Function Symbols

Definition
We are given (pairwise disjoint) sets of constants, variables,
function symbols (with arity > 0), and predicates (with arity ≥ 0).

A term is either a constant, a variable, or of the form f (t1, . . . , tm),
where f is a function symbol of arity m and the ti ’s are terms.
An atom is of the form p(t1, . . . , tn), where p is a predicate of arity
n and the ti ’s are terms.

A (Datalog) rule is of the form

A0︸︷︷︸
head

← A1, . . . ,An︸ ︷︷ ︸
body

where n ≥ 0 and the Ai ’s are atoms.
A (Datalog) program is a finite set of Datalog rules.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 15 / 184

Syntax: Datalog with Function Symbols

Definition
We are given (pairwise disjoint) sets of constants, variables,
function symbols (with arity > 0), and predicates (with arity ≥ 0).

A term is either a constant, a variable, or of the form f (t1, . . . , tm),
where f is a function symbol of arity m and the ti ’s are terms.
An atom is of the form p(t1, . . . , tn), where p is a predicate of arity
n and the ti ’s are terms.
A (Datalog) rule is of the form

A0︸︷︷︸
head

← A1, . . . ,An︸ ︷︷ ︸
body

where n ≥ 0 and the Ai ’s are atoms.

A (Datalog) program is a finite set of Datalog rules.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 15 / 184

Syntax: Datalog with Function Symbols

Definition
We are given (pairwise disjoint) sets of constants, variables,
function symbols (with arity > 0), and predicates (with arity ≥ 0).

A term is either a constant, a variable, or of the form f (t1, . . . , tm),
where f is a function symbol of arity m and the ti ’s are terms.
An atom is of the form p(t1, . . . , tn), where p is a predicate of arity
n and the ti ’s are terms.
A (Datalog) rule is of the form

A0︸︷︷︸
head

← A1, . . . ,An︸ ︷︷ ︸
body

where n ≥ 0 and the Ai ’s are atoms.
A (Datalog) program is a finite set of Datalog rules.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 15 / 184

Syntax: Datalog with Function Symbols

We consider safe programs: every variable in the head must appear in
the body.

Example (Safe program)

p(f(X),Y)← q(X),r(Y).

Example (Unsafe program)

p(f(X),Y)← q(X),r(Z).

No disjunction and negation (for now).

Function symbols are uninterpreted (they are not evaluated).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 16 / 184

Syntax: Datalog with Function Symbols

We consider safe programs: every variable in the head must appear in
the body.

Example (Safe program)

p(f(X),Y)← q(X),r(Y).

Example (Unsafe program)

p(f(X),Y)← q(X),r(Z).

No disjunction and negation (for now).

Function symbols are uninterpreted (they are not evaluated).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 16 / 184

Syntax: Datalog with Function Symbols

We consider safe programs: every variable in the head must appear in
the body.

Example (Safe program)

p(f(X),Y)← q(X),r(Y).

Example (Unsafe program)

p(f(X),Y)← q(X),r(Z).

No disjunction and negation (for now).

Function symbols are uninterpreted (they are not evaluated).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 16 / 184

Syntax: Datalog with Function Symbols

We consider safe programs: every variable in the head must appear in
the body.

Example (Safe program)

p(f(X),Y)← q(X),r(Y).

Example (Unsafe program)

p(f(X),Y)← q(X),r(Z).

No disjunction and negation (for now).

Function symbols are uninterpreted (they are not evaluated).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 16 / 184

Syntax: Datalog with Function Symbols

Definition
The arguments of a program P are expressions of the form p[i] where
p is a predicate appearing in P and 1 ≤ i ≤ arity(p).

Example

p(X,Y) ← b(X,Y).
q(f(X)) ← p(X,Y).

The arguments of this program are b[1], b[2], p[1], p[2], and q[1].

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 17 / 184

Syntax: Datalog with Function Symbols

Definition
The arguments of a program P are expressions of the form p[i] where
p is a predicate appearing in P and 1 ≤ i ≤ arity(p).

Example

p(X,Y) ← b(X,Y).
q(f(X)) ← p(X,Y).

The arguments of this program are b[1], b[2], p[1], p[2], and q[1].

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 17 / 184

Termination Criteria

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 18 / 184

λ-Restricted Programs [GST07]
Basic Idea: Assign a level (i.e., an integer) λ(p) to each predicate p so
that all head variables in rules defining p are bound by predicates p′

with strictly lower level.

Example
q(X) ← p(X),r(X).

p(f(X)) ← q(X).

The program is λ-restricted.

Example

p(X) ← p(X).

No function symbols⇒ The evaluation always terminates.

λ(p) > λ(p)⇒ The program is not λ-restricted.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 19 / 184

λ-Restricted Programs [GST07]
Basic Idea: Assign a level (i.e., an integer) λ(p) to each predicate p so
that all head variables in rules defining p are bound by predicates p′

with strictly lower level.

Example
q(X) ← p(X),r(X).

p(f(X)) ← q(X).

λ(r) = 1;

The program is λ-restricted.

Example

p(X) ← p(X).

No function symbols⇒ The evaluation always terminates.

λ(p) > λ(p)⇒ The program is not λ-restricted.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 19 / 184

λ-Restricted Programs [GST07]
Basic Idea: Assign a level (i.e., an integer) λ(p) to each predicate p so
that all head variables in rules defining p are bound by predicates p′

with strictly lower level.

Example
q(X) ← p(X),r(X).

p(f(X)) ← q(X).

λ(r) = 1;

The program is λ-restricted.

Example

p(X) ← p(X).

No function symbols⇒ The evaluation always terminates.

λ(p) > λ(p)⇒ The program is not λ-restricted.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 19 / 184

λ-Restricted Programs [GST07]
Basic Idea: Assign a level (i.e., an integer) λ(p) to each predicate p so
that all head variables in rules defining p are bound by predicates p′

with strictly lower level.

Example
q(X) ← p(X),r(X).

p(f(X)) ← q(X).

λ(r) = 1;

The program is λ-restricted.

Example

p(X) ← p(X).

No function symbols⇒ The evaluation always terminates.

λ(p) > λ(p)⇒ The program is not λ-restricted.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 19 / 184

λ-Restricted Programs [GST07]
Basic Idea: Assign a level (i.e., an integer) λ(p) to each predicate p so
that all head variables in rules defining p are bound by predicates p′

with strictly lower level.

Example
q(X) ← p(X),r(X).

p(f(X)) ← q(X).

λ(r) = 1; λ(q) = 2;

The program is λ-restricted.

Example

p(X) ← p(X).

No function symbols⇒ The evaluation always terminates.

λ(p) > λ(p)⇒ The program is not λ-restricted.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 19 / 184

λ-Restricted Programs [GST07]
Basic Idea: Assign a level (i.e., an integer) λ(p) to each predicate p so
that all head variables in rules defining p are bound by predicates p′

with strictly lower level.

Example
q(X) ← p(X),r(X).

p(f(X)) ← q(X).

λ(r) = 1; λ(q) = 2;

The program is λ-restricted.

Example

p(X) ← p(X).

No function symbols⇒ The evaluation always terminates.

λ(p) > λ(p)⇒ The program is not λ-restricted.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 19 / 184

λ-Restricted Programs [GST07]
Basic Idea: Assign a level (i.e., an integer) λ(p) to each predicate p so
that all head variables in rules defining p are bound by predicates p′

with strictly lower level.

Example
q(X) ← p(X),r(X).

p(f(X)) ← q(X).

λ(r) = 1; λ(q) = 2;

The program is λ-restricted.

Example

p(X) ← p(X).

No function symbols⇒ The evaluation always terminates.

λ(p) > λ(p)⇒ The program is not λ-restricted.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 19 / 184

λ-Restricted Programs [GST07]
Basic Idea: Assign a level (i.e., an integer) λ(p) to each predicate p so
that all head variables in rules defining p are bound by predicates p′

with strictly lower level.

Example
q(X) ← p(X),r(X).

p(f(X)) ← q(X).

λ(r) = 1; λ(q) = 2; λ(p) = 3.

The program is λ-restricted.

Example

p(X) ← p(X).

No function symbols⇒ The evaluation always terminates.

λ(p) > λ(p)⇒ The program is not λ-restricted.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 19 / 184

λ-Restricted Programs [GST07]
Basic Idea: Assign a level (i.e., an integer) λ(p) to each predicate p so
that all head variables in rules defining p are bound by predicates p′

with strictly lower level.

Example
q(X) ← p(X),r(X).

p(f(X)) ← q(X).

λ(r) = 1; λ(q) = 2; λ(p) = 3.

The program is λ-restricted.

Example

p(X) ← p(X).

No function symbols⇒ The evaluation always terminates.

λ(p) > λ(p)⇒ The program is not λ-restricted.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 19 / 184

λ-Restricted Programs [GST07]
Basic Idea: Assign a level (i.e., an integer) λ(p) to each predicate p so
that all head variables in rules defining p are bound by predicates p′

with strictly lower level.

Example
q(X) ← p(X),r(X).

p(f(X)) ← q(X).

λ(r) = 1; λ(q) = 2; λ(p) = 3.

The program is λ-restricted.

Example

p(X) ← p(X).

No function symbols⇒ The evaluation always terminates.

λ(p) > λ(p)⇒ The program is not λ-restricted.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 19 / 184

λ-Restricted Programs [GST07]
Basic Idea: Assign a level (i.e., an integer) λ(p) to each predicate p so
that all head variables in rules defining p are bound by predicates p′

with strictly lower level.

Example
q(X) ← p(X),r(X).

p(f(X)) ← q(X).

λ(r) = 1; λ(q) = 2; λ(p) = 3.

The program is λ-restricted.

Example

p(X) ← p(X).

No function symbols⇒ The evaluation always terminates.

λ(p) > λ(p)⇒ The program is not λ-restricted.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 19 / 184

Finite Domain Programs [CCIL08]

Argument Graph
It describes the propagation of values among arguments.

the nodes are the arguments of the program, and

there is an edge from p[i] to q[j] if there is a rule where a term is propagated
from p[i] to q[j].

Example (Argument Graph)

q(X) ← q(f(X)).
p(f(X)) ← q(X),r(X,Y).

q[1] p[1] x	 r[1] x	 r[2]

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 20 / 184

Finite Domain Programs [CCIL08]

Argument Graph
It describes the propagation of values among arguments.

the nodes are the arguments of the program, and

there is an edge from p[i] to q[j] if there is a rule where a term is propagated
from p[i] to q[j].

Example (Argument Graph)

q(X) ← q(f(X)).
p(f(X)) ← q(X),r(X,Y).

q[1] p[1] x	 r[1] x	 r[2]

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 21 / 184

Finite Domain Programs [CCIL08]

Argument Graph
It describes the propagation of values among arguments.

the nodes are the arguments of the program, and

there is an edge from p[i] to q[j] if there is a rule where a term is propagated
from p[i] to q[j].

Example (Argument Graph)

q(X) ← q(f(X)).
p(f(X)) ← q(X),r(X,Y).

q[1] p[1] x	 r[1] x	 r[2]

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 22 / 184

Finite Domain Programs [CCIL08]

Argument Graph
It describes the propagation of values among arguments.

the nodes are the arguments of the program, and

there is an edge from p[i] to q[j] if there is a rule where a term is propagated
from p[i] to q[j].

Example (Argument Graph)

q(X) ← q(f(X)).
p(f(X)) ← q(X),r(X,Y).

q[1] p[1] x	 r[1] x	 r[2]

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 23 / 184

Finite Domain Programs [CCIL08]

Example

q(X) ← q(f(X)).
p(f(X)) ← q(X),r(X,Y).

q[1] p[1] x	 r[1] x	 r[2]

Finite domain arguments:

r[1] and r[2], as they appear in no head.
q[1], as the term in the head of the 1st rule is a subterm of that in
the body.
p[1], as r[1] is finite domain and is not “recursive” with p[1]

All arguments are finite domain⇒ The program is finite domain.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 24 / 184

Finite Domain Programs [CCIL08]

Example

q(X) ← q(f(X)).
p(f(X)) ← q(X),r(X,Y).

q[1] p[1] x	 r[1] x	 r[2]

Finite domain arguments:
r[1] and r[2], as they appear in no head.

q[1], as the term in the head of the 1st rule is a subterm of that in
the body.
p[1], as r[1] is finite domain and is not “recursive” with p[1]

All arguments are finite domain⇒ The program is finite domain.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 24 / 184

Finite Domain Programs [CCIL08]

Example

q(X) ← q(f(X)).
p(f(X)) ← q(X),r(X,Y).

q[1] p[1] x	 r[1] x	 r[2]

Finite domain arguments:
r[1] and r[2], as they appear in no head.
q[1], as the term in the head of the 1st rule is a subterm of that in
the body.

p[1], as r[1] is finite domain and is not “recursive” with p[1]

All arguments are finite domain⇒ The program is finite domain.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 24 / 184

Finite Domain Programs [CCIL08]

Example

q(X) ← q(f(X)).
p(f(X)) ← q(X),r(X,Y).

q[1] p[1] x	 r[1] x	 r[2]

Finite domain arguments:
r[1] and r[2], as they appear in no head.
q[1], as the term in the head of the 1st rule is a subterm of that in
the body.
p[1], as r[1] is finite domain and is not “recursive” with p[1]

All arguments are finite domain⇒ The program is finite domain.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 24 / 184

Finite Domain Programs [CCIL08]

Example

q(X) ← q(f(X)).
p(f(X)) ← q(X),r(X,Y).

q[1] p[1] x	 r[1] x	 r[2]

Finite domain arguments:
r[1] and r[2], as they appear in no head.
q[1], as the term in the head of the 1st rule is a subterm of that in
the body.
p[1], as r[1] is finite domain and is not “recursive” with p[1]

All arguments are finite domain⇒ The program is finite domain.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 24 / 184

Relative Expressivity

Finite Domain λ-Restricted

Theorem
λ-Restricted ∦ Finite Domain.

Example (Finite Domain but not λ-Restricted)
q(X) ← q(f(X)).

p(f(X)) ← q(X),r(X,Y).

Example (λ-Restricted but not Finite Domain)
q(X) ← p(X),r(X).

p(f(X)) ← q(X).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 25 / 184

Relative Expressivity

Finite Domain λ-Restricted

Theorem
λ-Restricted ∦ Finite Domain.

Example (Finite Domain but not λ-Restricted)
q(X) ← q(f(X)).

p(f(X)) ← q(X),r(X,Y).

Example (λ-Restricted but not Finite Domain)
q(X) ← p(X),r(X).

p(f(X)) ← q(X).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 25 / 184

Relative Expressivity

Finite Domain λ-Restricted

Theorem
λ-Restricted ∦ Finite Domain.

Example (Finite Domain but not λ-Restricted)
q(X) ← q(f(X)).

p(f(X)) ← q(X),r(X,Y).

Example (λ-Restricted but not Finite Domain)
q(X) ← p(X),r(X).

p(f(X)) ← q(X).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 25 / 184

Argument Restriction [LL09]

Basic idea: assign to each argument an upper bound of the depth of
terms that may occur in that argument.

Term Depth
Depth d(X , t) of a variable X in a term t containing X :

d(X , X) = 0
d(X , f (t1, . . . , tm)) = 1 + max

1≤i≤m : ti contains X
d(X , ti).

Example

d(X, f(X,g(X),Y))

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 26 / 184

Argument Restriction [LL09]

Basic idea: assign to each argument an upper bound of the depth of
terms that may occur in that argument.

Term Depth
Depth d(X , t) of a variable X in a term t containing X :

d(X , X) = 0
d(X , f (t1, . . . , tm)) = 1 + max

1≤i≤m : ti contains X
d(X , ti).

Example

d(X, f(X,g(X),Y))

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 26 / 184

Argument Restriction [LL09]

Basic idea: assign to each argument an upper bound of the depth of
terms that may occur in that argument.

Term Depth
Depth d(X , t) of a variable X in a term t containing X :

d(X , X) = 0
d(X , f (t1, . . . , tm)) = 1 + max

1≤i≤m : ti contains X
d(X , ti).

Example

d(X, f(X,g(X),Y))

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 26 / 184

Argument Restriction [LL09]

Basic idea: assign to each argument an upper bound of the depth of
terms that may occur in that argument.

Term Depth
Depth d(X , t) of a variable X in a term t containing X :

d(X , X) = 0
d(X , f (t1, . . . , tm)) = 1 + max

1≤i≤m : ti contains X
d(X , ti).

Example

d(X, f(X,g(X),Y)) = 2

d(Y, f(X,g(X),Y)) = 1

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 27 / 184

Argument Restriction [LL09]

Basic idea: assign to each argument an upper bound of the depth of
terms that may occur in that argument.

Term Depth
Depth d(X , t) of a variable X in a term t containing X :

d(X , X) = 0
d(X , f (t1, . . . , tm)) = 1 + max

1≤i≤m : ti contains X
d(X , ti).

Example

d(X, f(X,g(X),Y)) = 2

d(Y, f(X,g(X),Y)) = 1

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 27 / 184

Argument Restriction [LL09]
Basic idea: assign to each argument an upper bound of the depth of
terms that may occur in that argument.

Example

p(f(X)) ← q(X)

q(X) ← p(f(X))

We need to find a function φ
(assigning an integer to each argument) such that:

φ(p[1]) ≥ φ(q[1]) + 1− 0, and

φ(q[1]) ≥ φ(p[1]) + 0− 1.

The program is argument-restricted

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 28 / 184

Argument Restriction [LL09]
Basic idea: assign to each argument an upper bound of the depth of
terms that may occur in that argument.

Example

p(f(X)) ← q(X)

q(X) ← p(f(X))

We need to find a function φ
(assigning an integer to each argument) such that:

φ(p[1]) ≥ φ(q[1]) + 1− 0, and

φ(q[1]) ≥ φ(p[1]) + 0− 1.

The program is argument-restricted

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 28 / 184

Argument Restriction [LL09]
Basic idea: assign to each argument an upper bound of the depth of
terms that may occur in that argument.

Example

p(f(X)) ← q(X)

q(X) ← p(f(X))

We need to find a function φ
(assigning an integer to each argument) such that:

φ(p[1]) ≥ φ(q[1]) + 1− 0, and

φ(q[1]) ≥ φ(p[1]) + 0− 1.

The program is argument-restricted

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 28 / 184

Argument Restriction [LL09]
Basic idea: assign to each argument an upper bound of the depth of
terms that may occur in that argument.

Example
1

p(f(X)) ←
0

q(X)
0

q(X) ←
1

p(f(X))

We need to find a function φ
(assigning an integer to each argument) such that:

φ(p[1]) ≥ φ(q[1]) + 1− 0, and

φ(q[1]) ≥ φ(p[1]) + 0− 1.

The program is argument-restricted

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 28 / 184

Relative Expressivity

Theorem
Finite Domain (Argument Restricted.
λ-Restricted (Argument Restricted.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 29 / 184

Argument Restriction [LL09]

Simple and easy (polynomial time) to compute.

Limitation: No distinction between different function symbols.

Example

p(f(f(X)))← p(g(X))

We need to find a function φ such that

φ(p[1]) ≥ φ(p[1]) + 1

No such φ exists. The program is not argument-restricted...
... but the program evaluation always terminates.

Argument restriction can be used as a starting point for more complex
analysis.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 30 / 184

Argument Restriction [LL09]

Simple and easy (polynomial time) to compute.

Limitation: No distinction between different function symbols.

Example

p(f(f(X)))← p(g(X))

We need to find a function φ such that

φ(p[1]) ≥ φ(p[1]) + 1

No such φ exists. The program is not argument-restricted...
... but the program evaluation always terminates.

Argument restriction can be used as a starting point for more complex
analysis.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 30 / 184

Bounded Programs [GMT13b]

Basic Idea:

Start with a set A of “limited” arguments.
Iteratively apply a (monotone) operator Ψ(A) which derives more
arguments as “limited”.
If, eventually, all arguments are derived as limited, then the
program is bounded.

The operator relies on two tools:
the activation graph, and
the labeled argument graph.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 31 / 184

Bounded Programs [GMT13b]

Basic Idea:

Start with a set A of “limited” arguments.
Iteratively apply a (monotone) operator Ψ(A) which derives more
arguments as “limited”.
If, eventually, all arguments are derived as limited, then the
program is bounded.

The operator relies on two tools:
the activation graph, and
the labeled argument graph.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 31 / 184

Termination Analysis Tools — Activation Graph

Activation Graph
It describes “activation” of rules.

the nodes are the rules of the program, and

there is an edge from ri to rj iff the head of ri unifies with some body atom of rj .

Example
r1 : q(f(X))← p(X)
r2 : p(g(X))← q(X)

r1 r2

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 32 / 184

Termination Analysis Tools — Activation Graph

Activation Graph
It describes “activation” of rules.

the nodes are the rules of the program, and

there is an edge from ri to rj iff the head of ri unifies with some body atom of rj .

Example
r1 : q(f(X))← p(X)
r2 : p(g(X))← q(X)

r1 r2

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 32 / 184

Termination Analysis Tools — Activation Graph

Activation Graph
It describes “activation” of rules.

the nodes are the rules of the program, and

there is an edge from ri to rj iff the head of ri unifies with some body atom of rj .

Example
r1 : q(f(X))← p(X)
r2 : p(g(X))← q(X)

r1 r2

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 32 / 184

Termination Analysis Tools — Activation Graph

Activation Graph
It describes “activation” of rules.

the nodes are the rules of the program, and

there is an edge from ri to rj iff the head of ri unifies with some body atom of rj .

Example
r1 : q(f(X))← p(X)
r2 : p(g(X))← q(X)

r1 r2

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 33 / 184

Termination Analysis Tools — Activation Graph

Activation Graph
It describes “activation” of rules.

the nodes are the rules of the program, and

there is an edge from ri to rj iff the head of ri unifies with some body atom of rj .

Example
r1 : q(f(X))← p(X)
r2 : p(g(X))← q(X)

r1 r2

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 34 / 184

Termination Analysis Tools — Activation Graph

Activation Graph
It describes “activation” of rules.

the nodes are the rules of the program, and

there is an edge from ri to rj iff the head of ri unifies with some body atom of rj .

Example
r1 : q(f(X))← p(X)
r2 : p(g(X))← q(X)

r1 r2

Example
r1 : q(f(X))← p(X)
r2 : p(g(X))← q(g(X))

r1 r2

A rule might be applied an infinite number of times only if it depends on a cycle.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 35 / 184

Termination Analysis Tools — Activation Graph

Activation Graph
It describes “activation” of rules.

the nodes are the rules of the program, and

there is an edge from ri to rj iff the head of ri unifies with some body atom of rj .

Example
r1 : q(f(X))← p(X)
r2 : p(g(X))← q(X)

r1 r2

Example
r1 : q(f(X))← p(X)
r2 : p(g(X))← q(g(X))

r1 r2

A rule might be applied an infinite number of times only if it depends on a cycle.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 35 / 184

Termination Analysis Tools — Labeled Argument
Graph
Labeled Argument Graph
It describes the propagation of values among arguments.

the nodes are the arguments of the program, and

there is an edge from p[i] to q[j] if there is a rule where a term is propagated
from p[i] to q[j].

Example

r1 : q(f(X),X) ← b(Y), p(X).
r2 : p(X) ← q(f(X),Y).

q[1] p[1] x	 q[2] x	 b[1]

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 36 / 184

Termination Analysis Tools — Labeled Argument
Graph
Labeled Argument Graph
It describes the propagation of values among arguments.

the nodes are the arguments of the program, and

there is an edge from p[i] to q[j] if there is a rule where a term is propagated
from p[i] to q[j].

Example

r1 : q(f(X),X) ← b(Y), p(X).
r2 : p(X) ← q(f(X),Y).

q[1] p[1] x	 q[2] x	 b[1]

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 36 / 184

Termination Analysis Tools — Labeled Argument
Graph
Labeled Argument Graph
It describes the propagation of values among arguments.

the nodes are the arguments of the program, and

there is an edge from p[i] to q[j] if there is a rule where a term is propagated
from p[i] to q[j].

Example

r1 : q(f(X),X) ← b(Y), p(X).
r2 : p(X) ← q(f(X),Y).

q[1] p[1] x	 q[2] x	 b[1]

f, r1, 2

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 37 / 184

Termination Analysis Tools — Labeled Argument
Graph
Labeled Argument Graph
It describes the propagation of values among arguments.

the nodes are the arguments of the program, and

there is an edge from p[i] to q[j] if there is a rule where a term is propagated
from p[i] to q[j].

Example

r1 : q(f(X),X) ← b(Y), p(X).
r2 : p(X) ← q(f(X),Y).

q[1] p[1] x	 q[2] x	 b[1]

f, r1, 2

є, r1, 2

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 38 / 184

Termination Analysis Tools — Labeled Argument
Graph
Labeled Argument Graph
It describes the propagation of values among arguments.

the nodes are the arguments of the program, and

there is an edge from p[i] to q[j] if there is a rule where a term is propagated
from p[i] to q[j].

Example

r1 : q(f(X),X) ← b(Y), p(X).
r2 : p(X) ← q(f(X),Y).

q[1] p[1] x	 q[2] x	 b[1]

f, r1, 2

f, r2, 1

є, r1, 2

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 39 / 184

Cycle Classification

Two classifications of cycles in the labeled argument graph:

The aim is to identify “harmless” cycles.

1. Balanced cycle

1. Active cycle

2. Growing cycle

2. Inactive cycle

3. Failing cycle

⇑
The activation graph is also used

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 40 / 184

Cycle Classification

Two classifications of cycles in the labeled argument graph:

The aim is to identify “harmless” cycles.

1. Balanced cycle

1. Active cycle

2. Growing cycle

2. Inactive cycle

3. Failing cycle

⇑
The activation graph is also used

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 40 / 184

Cycle Classification

Two classifications of cycles in the labeled argument graph:

The aim is to identify “harmless” cycles.

1. Balanced cycle 1. Active cycle

2. Growing cycle 2. Inactive cycle

3. Failing cycle

⇑
The activation graph is also used

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 40 / 184

Cycle Classification

Two classifications of cycles in the labeled argument graph:

The aim is to identify “harmless” cycles.

1. Balanced cycle 1. Active cycle

2. Growing cycle 2. Inactive cycle

3. Failing cycle ⇑
The activation graph is also used

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 40 / 184

Balanced, Growing, and Failing Cycles

Classification on the basis of the first component of the edge labels.

Balanced / Growing / Failing Cycles
Balanced cycle: a term propagated through the whole cycle remains the same.

Growing cycle: a term propagated through the whole cycle grows.

Failing cycle: a term propagated through the whole cycle decreases or cannot
really go through the entire cycle.

Terms in an argument might grow infinitely only if this argument
depends on a growing cycle.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 41 / 184

Balanced, Growing, and Failing Cycles

Balanced cycle

r1 : q(f(X))← p(X)
r2 : p(X)← q(f(X))

p[1]	 q[1]	

f,	 r1,	 1	

f,	 r2,	 1	

f f̄ ≈ ε

p(a).
q(f(a)) ← p(a).

p(a) ← q(f(a)).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 42 / 184

Balanced, Growing, and Failing Cycles

Balanced cycle

r1 : q(f(X))← p(X)
r2 : p(X)← q(f(X))

p[1]	 q[1]	

f,	 r1,	 1	

f,	 r2,	 1	

f f̄ ≈ ε

p(a).
q(f(a)) ← p(a).

p(a) ← q(f(a)).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 42 / 184

Balanced, Growing, and Failing Cycles

Balanced cycle

r1 : q(f(X))← p(X)
r2 : p(X)← q(f(X))

p[1]	 q[1]	

f,	 r1,	 1	

f,	 r2,	 1	

f f̄ ≈ ε

Growing cycle

r1 : q(f(X))← p(X)
r2 : p(X)← q(X)

p[1]	 q[1]	

f,	 r1,	 1	

є,	 r2,	 1	

f ε ≈ f

p(a).
q(f(a)) ← p(a).

p(f(a)) ← q(f(a)).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 43 / 184

Balanced, Growing, and Failing Cycles

Balanced cycle

r1 : q(f(X))← p(X)
r2 : p(X)← q(f(X))

p[1]	 q[1]	

f,	 r1,	 1	

f,	 r2,	 1	

f f̄ ≈ ε

Growing cycle

r1 : q(f(X))← p(X)
r2 : p(X)← q(X)

p[1]	 q[1]	

f,	 r1,	 1	

є,	 r2,	 1	

f ε ≈ f

p(a).
q(f(a)) ← p(a).
p(f(a)) ← q(f(a)).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 43 / 184

Balanced, Growing, and Failing Cycles

Balanced cycle

r1 : q(f(X))← p(X)
r2 : p(X)← q(f(X))

p[1]	 q[1]	

f,	 r1,	 1	

f,	 r2,	 1	

f f̄ ≈ ε

Growing cycle

r1 : q(f(X))← p(X)
r2 : p(X)← q(X)

p[1]	 q[1]	

f,	 r1,	 1	

є,	 r2,	 1	

\[

f ε ≈ f

Failing cycle

r1 : q(f(X))← p(X)
r2 : p(X)← q(h(X))

p[1]	 q[1]	

f,	 r1,	 1	

h,	 r2,	 1	

f h̄

p(a).
q(f(a)) ← p(a).

p(a) ← q(h(a)).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 44 / 184

Balanced, Growing, and Failing Cycles

Balanced cycle

r1 : q(f(X))← p(X)
r2 : p(X)← q(f(X))

p[1]	 q[1]	

f,	 r1,	 1	

f,	 r2,	 1	

f f̄ ≈ ε

Growing cycle

r1 : q(f(X))← p(X)
r2 : p(X)← q(X)

p[1]	 q[1]	

f,	 r1,	 1	

є,	 r2,	 1	

\[

f ε ≈ f

Failing cycle

r1 : q(f(X))← p(X)
r2 : p(X)← q(h(X))

p[1]	 q[1]	

f,	 r1,	 1	

h,	 r2,	 1	

f h̄

p(a).
q(f(a)) ← p(a).

p(a) ← q(h(a)).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 44 / 184

Active and Inactive Cycles
Classification on the basis of the second component of the edge labels.

The activation graph is also used.

Active / Inactive Cycles
Active cycle: the corresponding rules form a cycle in the activation graph.

Inactive cycle: otherwise.

Example (Active Cycle)
r1 : q(f(X)) ← p(X).
r2 : p(X) ← q(X).

p[1] q[1]

f, r1, 1

є, r2, 1

r1 r2

Example (Inactive Cycles)
r1 : p(f(X),g(X)) ← p(X,X).

p[1] p[2]

g, r1, 1

f, r1, 1

f, r1, 1 g, r1, 1

r1

Only active cycles may be “dangerous”.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 45 / 184

Active and Inactive Cycles
Classification on the basis of the second component of the edge labels.

The activation graph is also used.

Active / Inactive Cycles
Active cycle: the corresponding rules form a cycle in the activation graph.

Inactive cycle: otherwise.

Example (Active Cycle)
r1 : q(f(X)) ← p(X).
r2 : p(X) ← q(X).

p[1] q[1]

f, r1, 1

є, r2, 1

r1 r2

Example (Inactive Cycles)
r1 : p(f(X),g(X)) ← p(X,X).

p[1] p[2]

g, r1, 1

f, r1, 1

f, r1, 1 g, r1, 1

r1

Only active cycles may be “dangerous”.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 45 / 184

Active and Inactive Cycles
Classification on the basis of the second component of the edge labels.

The activation graph is also used.

Active / Inactive Cycles
Active cycle: the corresponding rules form a cycle in the activation graph.

Inactive cycle: otherwise.

Example (Active Cycle)
r1 : q(f(X)) ← p(X).
r2 : p(X) ← q(X).

p[1] q[1]

f, r1, 1

є, r2, 1

r1 r2

Example (Inactive Cycles)
r1 : p(f(X),g(X)) ← p(X,X).

p[1] p[2]

g, r1, 1

f, r1, 1

f, r1, 1 g, r1, 1

r1

Only active cycles may be “dangerous”.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 45 / 184

Active and Inactive Cycles
Classification on the basis of the second component of the edge labels.

The activation graph is also used.

Active / Inactive Cycles
Active cycle: the corresponding rules form a cycle in the activation graph.

Inactive cycle: otherwise.

Example (Active Cycle)
r1 : q(f(X)) ← p(X).
r2 : p(X) ← q(X).

p[1] q[1]

f, r1, 1

є, r2, 1

r1 r2

Example (Inactive Cycles)
r1 : p(f(X),g(X)) ← p(X,X).

p[1] p[2]

g, r1, 1

f, r1, 1

f, r1, 1 g, r1, 1

r1

Only active cycles may be “dangerous”.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 45 / 184

Argument-bounded Cycles

The depth of terms in an argument might grow only if this argument
depends on an active growing cycle.

However . . .

Example

r1 : q(f(X)) ← p(X),b(X)
r2 : p(X) ← q(X).

p[1] q[1]
f, r1, 1

є, r2, 1

b[1] f, r1, 2

Since b[1] is limited, the number of values propagated in q[1] is finite.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 46 / 184

Argument-bounded Cycles

The depth of terms in an argument might grow only if this argument
depends on an active growing cycle.

However . . .

Example

r1 : q(f(X)) ← p(X),b(X)
r2 : p(X) ← q(X).

p[1] q[1]
f, r1, 1

є, r2, 1

b[1] f, r1, 2

Since b[1] is limited, the number of values propagated in q[1] is finite.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 46 / 184

Twin Cycles

Example (List length)

r0 : count([a,b,c],0). count([a,b,c],0)
r1 : count(L,s(I))← count([X|L],I). count([b,c],s(0))

count([c],s(s(0)))
Query goal : count([],N). count([],s(s(s(0))))

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 47 / 184

Twin Cycles

Example (List length)

r0 : count([a,b,c],0). count([a,b,c],0)
r1 : count(L,s(I))← count([X|L],I). count([b,c],s(0))

count([c],s(s(0)))
Query goal : count([],N). count([],s(s(s(0))))

The arguments may influence each other even if
they do not exchange values

The growth of count[2] is bounded by the reduction of
count[1].

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 48 / 184

Twin Cycles

Example (Append)

magic append([a,b], [c,d]).
magic append(L1,L2)← magic append([X|L1],L2).

append([],L,L)← magic append([],L).
append([X|L1],L2, [X|L3])← magic append([X|L1],L2),

append(L1,L2,L3).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 49 / 184

Twin Cycles
Cycles are classified on the basis of the last two components of the
edge labels.

Twin cycles describe the propagation of values through the same
atoms of the same rules (the last two components of the edge labels
coincide).

Example

r1 : q(X,Y)← p(X,f(Y)).
r2 : p(f(X),Y)← q(X,Y).

π1 and π2 are twin cycles.
The growth of values in π1 is
bounded by the reduction in π2.

 q[2]

f,	 r1	 ,1

 p[2]
є,	 r2	 ,1

π2

 p[1]

є,	 r1	 ,1

f,	 r2	 ,1

π1 q[1]

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 50 / 184

Twin Cycles
Cycles are classified on the basis of the last two components of the
edge labels.

Twin cycles describe the propagation of values through the same
atoms of the same rules (the last two components of the edge labels
coincide).

Example

r1 : q(X,Y)← p(X,f(Y)).
r2 : p(f(X),Y)← q(X,Y).

π1 and π2 are twin cycles.
The growth of values in π1 is
bounded by the reduction in π2.

 q[2]

f,	 r1	 ,1

 p[2]
є,	 r2	 ,1

π2

 p[1]

є,	 r1	 ,1

f,	 r2	 ,1

π1 q[1]

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 50 / 184

Twin Cycles
Cycles are classified on the basis of the last two components of the
edge labels.

Twin cycles describe the propagation of values through the same
atoms of the same rules (the last two components of the edge labels
coincide).

Example

r1 : q(X,Y)← p(X,f(Y)).
r2 : p(f(X),Y)← q(X,Y).

π1 and π2 are twin cycles.
The growth of values in π1 is
bounded by the reduction in π2.

 q[2]

f,	 r1	 ,1

 p[2]
є,	 r2	 ,1

π2

 p[1]

є,	 r1	 ,1

f,	 r2	 ,1

π1 q[1]

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 50 / 184

Twin Cycles
Cycles are classified on the basis of the last two components of the
edge labels.

Twin cycles describe the propagation of values through the same
atoms of the same rules (the last two components of the edge labels
coincide).

Example

r1 : q(X,Y)← p(X,f(Y)).
r2 : p(f(X),Y)← q(X,Y).

π1 and π2 are twin cycles.
The growth of values in π1 is
bounded by the reduction in π2.

 q[2]

f,	 r1	 ,1

 p[2]
є,	 r2	 ,1

π2

 p[1]

є,	 r1	 ,1

f,	 r2	 ,1

π1 q[1]

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 50 / 184

Twin Cycles
Cycles are classified on the basis of the last two components of the
edge labels.

Twin cycles describe the propagation of values through the same
atoms of the same rules (the last two components of the edge labels
coincide).

Example

r1 : q(X,Y)← p(X,f(Y)).
r2 : p(f(X),Y)← q(X,Y).

π1 and π2 are twin cycles.

The growth of values in π1 is
bounded by the reduction in π2.

 q[2]

f,	 r1	 ,1

 p[2]
є,	 r2	 ,1

π2

 p[1]

є,	 r1	 ,1

f,	 r2	 ,1

π1 q[1]

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 50 / 184

Twin Cycles
Cycles are classified on the basis of the last two components of the
edge labels.

Twin cycles describe the propagation of values through the same
atoms of the same rules (the last two components of the edge labels
coincide).

Example

r1 : q(X,Y)← p(X,f(Y)).
r2 : p(f(X),Y)← q(X,Y).

π1 and π2 are twin cycles.
The growth of values in π1 is
bounded by the reduction in π2.

 q[2]

f,	 r1	 ,1

 p[2]
є,	 r2	 ,1

π2

 p[1]

є,	 r1	 ,1

f,	 r2	 ,1

π1 q[1]

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 50 / 184

Bounded Programs

Start with a set A of limited arguments.
Then, add an argument p[i] if, for every cycle π on which p[i]
depends:

1 π is not active or not growing;
2 π has a twin cycle π′ which is not balanced and goes only through

arguments in A; or
3 π is argument-bounded.

Example
count([a,b,c],0).

r : count(L,s(I))← count([X|L],I).

Both π and π′ are active cycles;
π is failing, then count[1] is limited (Condition 1);
π′ is a twin of π. Since π is not balanced and its arguments are
limited, count[2] is also limited (Condition 2).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 51 / 184

Bounded Programs

Start with a set A of limited arguments.
Then, add an argument p[i] if, for every cycle π on which p[i]
depends:

1 π is not active or not growing;
2 π has a twin cycle π′ which is not balanced and goes only through

arguments in A; or
3 π is argument-bounded.

Example
count([a,b,c],0).

r : count(L,s(I))← count([X|L],I).

Both π and π′ are active cycles;

π is failing, then count[1] is limited (Condition 1);
π′ is a twin of π. Since π is not balanced and its arguments are
limited, count[2] is also limited (Condition 2).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 51 / 184

Bounded Programs

Start with a set A of limited arguments.
Then, add an argument p[i] if, for every cycle π on which p[i]
depends:

1 π is not active or not growing;
2 π has a twin cycle π′ which is not balanced and goes only through

arguments in A; or
3 π is argument-bounded.

Example
count([a,b,c],0).

r : count(L,s(I))← count([X|L],I).

Both π and π′ are active cycles;
π is failing, then count[1] is limited (Condition 1);

π′ is a twin of π. Since π is not balanced and its arguments are
limited, count[2] is also limited (Condition 2).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 51 / 184

Bounded Programs

Start with a set A of limited arguments.
Then, add an argument p[i] if, for every cycle π on which p[i]
depends:

1 π is not active or not growing;
2 π has a twin cycle π′ which is not balanced and goes only through

arguments in A; or
3 π is argument-bounded.

Example
count([a,b,c],0).

r : count(L,s(I))← count([X|L],I).

Both π and π′ are active cycles;
π is failing, then count[1] is limited (Condition 1);
π′ is a twin of π. Since π is not balanced and its arguments are
limited, count[2] is also limited (Condition 2).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 51 / 184

Relative Expressivity

Finite Domain λ-Restricted

Argument Restricted

Bounded

Theorem
Argument Restricted (Bounded.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 52 / 184

Rule-bounded programs [CGMT14]

Many practical programs contain rules where the “size” of the head atom does not
increase w.r.t. the “size” of a body atom.

Example (Bubble Sort)
bub(L, [], [])← input(L).
bub([Y|T], [X|Cur],Sol)← bub([X|[Y|T]],Cur,Sol), X ≤ Y.
bub([X|T], [Y|Cur],Sol)← bub([X|[Y|T]],Cur,Sol), Y < X.
bub(Cur, [], [X|Sol])← bub([X|[]],Cur,Sol).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 53 / 184

Rule-bounded programs [CGMT14]

Many practical programs contain rules where the “size” of the head atom does not
increase w.r.t. the “size” of a body atom.

Example (Bubble Sort)
bub(L, [], [])← input(L).
bub([Y|T], [X|Cur], Sol)← bub([X|[Y|T]], Cur, Sol), X ≤ Y.
bub([X|T], [Y|Cur],Sol)← bub([X|[Y|T]],Cur,Sol), Y < X.
bub(Cur, [], [X|Sol])← bub([X|[]],Cur,Sol).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 54 / 184

Rule-bounded programs [CGMT14]

Many practical programs contain rules where the “size” of the head atom does not
increase w.r.t. the “size” of a body atom.

Example (Tree Visit)

visit(Tree, [], [])← input(Tree).
visit(Left, [Root|Visited], [Right|ToVisit])←

visit(tree(Root,Left,Right),Visited,ToVisit).
visit(Next,Visited,ToVisit)← visit(null,Visited, [Next|ToVisit]).

Example (List Concatenation)
reverse(L1, []) ← input1(L1).
reverse(L1, [X|L2]) ← reverse([X|L1],L2).
append(L1,L2) ← reverse([],L1), input2(L2).
append(L1, [X|L2]) ← append([X|L1],L2).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 55 / 184

Rule-bounded programs [CGMT14]

Many practical programs contain rules where the “size” of the head atom does not
increase w.r.t. the “size” of a body atom.

Example (Tree Visit)

visit(Tree, [], [])← input(Tree).
visit(Left, [Root|Visited], [Right|ToVisit])←

visit(tree(Root,Left,Right),Visited,ToVisit).
visit(Next,Visited,ToVisit)← visit(null,Visited, [Next|ToVisit]).

Example (List Concatenation)
reverse(L1, []) ← input1(L1).
reverse(L1, [X|L2]) ← reverse([X|L1],L2).
append(L1,L2) ← reverse([],L1), input2(L2).
append(L1, [X|L2]) ← append([X|L1],L2).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 55 / 184

Rule-bounded programs [CGMT14]

Basic idea: check if the size of the head is bounded by the size of
a body atom.

Linear constraints are used to check this condition.

Question: How do we measure the size of an atom?

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 56 / 184

Rule-bounded programs - Notions of Size
Term size:

t = f(X, c, g(Y,Z))

⇓
size(t) = 3 + (x + 0 + size(g(Y,Z)))

= 3 + (x + 0 + (2 + y + z))

Intuition: A template for all possible sizes the term may have during
the program evaluation.

Atom size: Linear combination of the size of its terms.

A = p(t1, . . . , tn)
⇓

size(A) = αp1 · size(t1) + . . .+ αpn · size(tn)

Integer coefficients αp1 , . . . , αpn will be chosen depending on the
program structure.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 57 / 184

Rule-bounded programs - Notions of Size
Term size:

t = f(X, c, g(Y,Z))

⇓
size(t) = 3 + (x + 0 + size(g(Y,Z)))

= 3 + (x + 0 + (2 + y + z))

Intuition: A template for all possible sizes the term may have during
the program evaluation.

Atom size: Linear combination of the size of its terms.

A = p(t1, . . . , tn)
⇓

size(A) = αp1 · size(t1) + . . .+ αpn · size(tn)

Integer coefficients αp1 , . . . , αpn will be chosen depending on the
program structure.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 57 / 184

Rule-bounded programs - Notions of Size
Term size:

t = f(X, c, g(Y,Z))

⇓
size(t) = 3 + (x + 0 + size(g(Y,Z)))

= 3 + (x + 0 + (2 + y + z))

Intuition: A template for all possible sizes the term may have during
the program evaluation.

Atom size: Linear combination of the size of its terms.

A = p(t1, . . . , tn)
⇓

size(A) = αp1 · size(t1) + . . .+ αpn · size(tn)

Integer coefficients αp1 , . . . , αpn will be chosen depending on the
program structure.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 57 / 184

Rule-bounded programs - Notions of Size
Term size:

t = f(X, c, g(Y,Z))

⇓
size(t) = 3 + (x + 0 + size(g(Y,Z)))

= 3 + (x + 0 + (2 + y + z))

Intuition: A template for all possible sizes the term may have during
the program evaluation.

Atom size: Linear combination of the size of its terms.

A = p(t1, . . . , tn)
⇓

size(A) = αp1 · size(t1) + . . .+ αpn · size(tn)

Integer coefficients αp1 , . . . , αpn will be chosen depending on the
program structure.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 57 / 184

Rule-bounded programs - Notions of Size
Term size:

t = f(X, c, g(Y,Z))

⇓
size(t) = 3 + (x + 0 + size(g(Y,Z)))

= 3 + (x + 0 + (2 + y + z))

Intuition: A template for all possible sizes the term may have during
the program evaluation.

Atom size: Linear combination of the size of its terms.

A = p(t1, . . . , tn)
⇓

size(A) = αp1 · size(t1) + . . .+ αpn · size(tn)

Integer coefficients αp1 , . . . , αpn will be chosen depending on the
program structure.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 57 / 184

Rule-bounded programs - Notions of Size
Term size:

t = f(X, c, g(Y,Z))

⇓
size(t) = 3 + (x + 0 + size(g(Y,Z)))

= 3 + (x + 0 + (2 + y + z))

Intuition: A template for all possible sizes the term may have during
the program evaluation.

Atom size: Linear combination of the size of its terms.

A = p(t1, . . . , tn)

⇓
size(A) = αp1 · size(t1) + . . .+ αpn · size(tn)

Integer coefficients αp1 , . . . , αpn will be chosen depending on the
program structure.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 57 / 184

Rule-bounded programs - Notions of Size
Term size:

t = f(X, c, g(Y,Z))

⇓
size(t) = 3 + (x + 0 + size(g(Y,Z)))

= 3 + (x + 0 + (2 + y + z))

Intuition: A template for all possible sizes the term may have during
the program evaluation.

Atom size: Linear combination of the size of its terms.

A = p(t1, . . . , tn)
⇓

size(A) = αp1 · size(t1) + . . .+ αpn · size(tn)

Integer coefficients αp1 , . . . , αpn will be chosen depending on the
program structure.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 57 / 184

Rule-bounded programs - Notions of Size
Term size:

t = f(X, c, g(Y,Z))

⇓
size(t) = 3 + (x + 0 + size(g(Y,Z)))

= 3 + (x + 0 + (2 + y + z))

Intuition: A template for all possible sizes the term may have during
the program evaluation.

Atom size: Linear combination of the size of its terms.

A = p(t1, . . . , tn)
⇓

size(A) = αp1 · size(t1) + . . .+ αpn · size(tn)

Integer coefficients αp1 , . . . , αpn will be chosen depending on the
program structure.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 57 / 184

Rule-bounded program - Example
Example (List Length)

r1 : len([a,b,c,d],0).
r2 : len(Tail,s(N))← len(list(Head,Tail),N).

We need to check:

size(body(r2)) ≥ size(head(r2))

α1 · (2 + head + tail) + α2 · n ≥ α1 · tail + α2 · (1 + n)

Find α1 and α2 s.t. the inequality holds for all head, tail, n ∈ N

2 · α1 + α1 · head + α1 · tail + α2 · n ≥ α1 · tail + α2 + α2 · n

2 · α1 ≥ α2

We can choose α1 = α2 = 1⇒ the program is rule-bounded.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 58 / 184

Rule-bounded program - Example
Example (List Length)

r1 : len([a,b,c,d],0).
r2 : len(Tail,s(N))← len(list(Head,Tail),N).

We need to check:

size(body(r2)) ≥ size(head(r2))

α1 · (2 + head + tail) + α2 · n ≥ α1 · tail + α2 · (1 + n)

Find α1 and α2 s.t. the inequality holds for all head, tail, n ∈ N

2 · α1 + α1 · head + α1 · tail + α2 · n ≥ α1 · tail + α2 + α2 · n

2 · α1 ≥ α2

We can choose α1 = α2 = 1⇒ the program is rule-bounded.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 58 / 184

Rule-bounded program - Example
Example (List Length)

r1 : len([a,b,c,d],0).
r2 : len(Tail,s(N))← len(list(Head,Tail),N).

We need to check:

size(body(r2)) ≥ size(head(r2))

α1 · (2 + head + tail)

+ α2 · n ≥ α1 · tail + α2 · (1 + n)

Find α1 and α2 s.t. the inequality holds for all head, tail, n ∈ N

2 · α1 + α1 · head + α1 · tail + α2 · n ≥ α1 · tail + α2 + α2 · n

2 · α1 ≥ α2

We can choose α1 = α2 = 1⇒ the program is rule-bounded.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 58 / 184

Rule-bounded program - Example
Example (List Length)

r1 : len([a,b,c,d],0).
r2 : len(Tail,s(N))← len(list(Head,Tail),N).

We need to check:

size(body(r2)) ≥ size(head(r2))

α1 · (2 + head + tail) + α2 · n

≥ α1 · tail + α2 · (1 + n)

Find α1 and α2 s.t. the inequality holds for all head, tail, n ∈ N

2 · α1 + α1 · head + α1 · tail + α2 · n ≥ α1 · tail + α2 + α2 · n

2 · α1 ≥ α2

We can choose α1 = α2 = 1⇒ the program is rule-bounded.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 58 / 184

Rule-bounded program - Example
Example (List Length)

r1 : len([a,b,c,d],0).
r2 : len(Tail,s(N))← len(list(Head,Tail),N).

We need to check:

size(body(r2)) ≥ size(head(r2))

α1 · (2 + head + tail) + α2 · n ≥ α1 · tail

+ α2 · (1 + n)

Find α1 and α2 s.t. the inequality holds for all head, tail, n ∈ N

2 · α1 + α1 · head + α1 · tail + α2 · n ≥ α1 · tail + α2 + α2 · n

2 · α1 ≥ α2

We can choose α1 = α2 = 1⇒ the program is rule-bounded.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 58 / 184

Rule-bounded program - Example
Example (List Length)

r1 : len([a,b,c,d],0).
r2 : len(Tail,s(N))← len(list(Head,Tail),N).

We need to check:

size(body(r2)) ≥ size(head(r2))

α1 · (2 + head + tail) + α2 · n ≥ α1 · tail + α2 · (1 + n)

Find α1 and α2 s.t. the inequality holds for all head, tail, n ∈ N

2 · α1 + α1 · head + α1 · tail + α2 · n ≥ α1 · tail + α2 + α2 · n

2 · α1 ≥ α2

We can choose α1 = α2 = 1⇒ the program is rule-bounded.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 58 / 184

Rule-bounded program - Example
Example (List Length)

r1 : len([a,b,c,d],0).
r2 : len(Tail,s(N))← len(list(Head,Tail),N).

We need to check:

size(body(r2)) ≥ size(head(r2))

α1 · (2 + head + tail) + α2 · n ≥ α1 · tail + α2 · (1 + n)

Find α1 and α2 s.t. the inequality holds for all head, tail, n ∈ N

2 · α1 + α1 · head + α1 · tail + α2 · n ≥ α1 · tail + α2 + α2 · n

2 · α1 ≥ α2

We can choose α1 = α2 = 1⇒ the program is rule-bounded.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 58 / 184

Rule-bounded program - Example
Example (List Length)

r1 : len([a,b,c,d],0).
r2 : len(Tail,s(N))← len(list(Head,Tail),N).

We need to check:

size(body(r2)) ≥ size(head(r2))

α1 · (2 + head + tail) + α2 · n ≥ α1 · tail + α2 · (1 + n)

Find α1 and α2 s.t. the inequality holds for all head, tail, n ∈ N

2 · α1 + α1 · head +���
�α1 · tail +���α2 · n ≥����α1 · tail + α2 +���α2 · n

2 · α1 ≥ α2

We can choose α1 = α2 = 1⇒ the program is rule-bounded.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 58 / 184

Rule-bounded program - Example
Example (List Length)

r1 : len([a,b,c,d],0).
r2 : len(Tail,s(N))← len(list(Head,Tail),N).

We need to check:

size(body(r2)) ≥ size(head(r2))

α1 · (2 + head + tail) + α2 · n ≥ α1 · tail + α2 · (1 + n)

Find α1 and α2 s.t. the inequality holds for all head, tail, n ∈ N

2 · α1 + α1 · head +���
�α1 · tail +���α2 · n ≥����α1 · tail + α2 +���α2 · n

2 · α1 ≥ α2

We can choose α1 = α2 = 1⇒ the program is rule-bounded.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 58 / 184

Rule-bounded program - Example
Example (List Length)

r1 : len([a,b,c,d],0).
r2 : len(Tail,s(N))← len(list(Head,Tail),N).

We need to check:

size(body(r2)) ≥ size(head(r2))

α1 · (2 + head + tail) + α2 · n ≥ α1 · tail + α2 · (1 + n)

Find α1 and α2 s.t. the inequality holds for all head, tail, n ∈ N

2 · α1 + α1 · head +���
�α1 · tail +���α2 · n ≥����α1 · tail + α2 +���α2 · n

2 · α1 ≥ α2

We can choose α1 = α2 = 1⇒ the program is rule-bounded.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 58 / 184

Rule-bounded programs - Another Example
Example (Bubble sort)

sort([b,a,d,h,e], [], []).
sort([Y|T], [X|Temp],Sorted) ← sort([X|[Y|T]]),Temp,Sorted),X ≤ Y.
sort([X|T], [Y|Temp],Sorted) ← sort([X|[Y|T]]),Temp,Sorted),Y < X.
sort(Temp, [], [X|Sorted]) ← sort([X],Temp,Sorted)).

α1 ·(4+x +y +t) + α2 ·temp + α3 ·sorted ≥
α1 ·(2+y +t) + α2 ·(2+x +temp) + α3 ·sorted

α1 ·(4+x +y +t) + α2 ·temp + α3 ·sorted ≥
α1 ·(2+x +t) + α2 ·(2+y +temp) + α3 ·sorted

α1 ·(2 + x) + α2 ·temp + α3 ·sorted ≥
α1 ·temp + α3 ·(2 + x + sorted)

A possible solution is α1 = 2, α2 = 2, α3 = 1

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 59 / 184

Relative Expressivity

Finite Domain λ-Restricted

Argument Restricted

Bounded

Rule-bounded

Theorem
Finite Domain (Rule-bounded.
λ-Restricted (Rule-bounded.
Argument Restricted ∦ Rule-bounded.
Bounded ∦ Rule-bounded.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 60 / 184

Program Adornment [GMT13a]

The technique can be used in conjunction with current termination
criteria allowing them to detect more programs having a
terminating evaluation.

The technique transforms a program P into an (adorned)
“equivalent” program Pµ.

The aim is to apply termination criteria to the adorned program Pµ

rather than the original program P.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 61 / 184

Program Adornment [GMT13a]

The technique can be used in conjunction with current termination
criteria allowing them to detect more programs having a
terminating evaluation.

The technique transforms a program P into an (adorned)
“equivalent” program Pµ.

The aim is to apply termination criteria to the adorned program Pµ

rather than the original program P.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 61 / 184

Program Adornment

Suppose we want to check if the evaluation of a program P
terminates by applying a criterion C.
We first transform P into an adorned program Pµ.
Then, we apply criterion C to Pµ (rather than the original program
P).
(Soundness) If Pµ satisfies criterion C, then the evaluation of the
original program P terminates.
This approach strictly enlarges the class of programs identified by
criterion C.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 62 / 184

Example Example	
	 Original	 program 	 	 	 	 	 	 	 	 	

p(X,X)← base(X)
q(X,Y)← p(X,Y)
p(f (X),g(X))← q(X,X)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 63 / 184

Example Example	

Each	 adorned	 rule	 is	 obtained	 from	 a	 rule	 in	 the	
original	 program	 by	 adding	 adornments	 which	 keep	

track	 of	 the	 structure	 of	 the	 terms	 that	 can	 be	
propagated	 during	 the	 bodom-‐up	 evalua+on.	

	 Original	 program 	 	 	 	 	 	 	 	 Adorned	 program	

p(X,X)← base(X)
q(X,Y)← p(X,Y)
p(f (X),g(X))← q(X,X)

pεε (X,X)← baseε (X)
qεε (X,Y)← pεε (X,Y)
p f1g1 (f (X),g(X))← qεε (X,X)
q f1g1 (X,Y)← p f1g1 (X,Y)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 64 / 184

Example Example	

The	 adorned	 program	 is	 “equivalent”	 to	 the	 original	 one	
in	 the	 following	 sense:	 the	 minimal	 model	 of	 the	 original	
program	 can	 be	 obtained	 from	 the	 minimal	 model	 of	 the	

adorned	 program	 by	 dropping	 adornments.	

	 Original	 program 	 	 	 	 	 	 	 	 Adorned	 program	

p(X,X)← base(X)
q(X,Y)← p(X,Y)
p(f (X),g(X))← q(X,X)

pεε (X,X)← baseε (X)
qεε (X,Y)← pεε (X,Y)
p f1g1 (f (X),g(X))← qεε (X,X)
q f1g1 (X,Y)← p f1g1 (X,Y)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 65 / 184

Adornment AlgorithmAdornment	 Algorithm	
	 	 	 Original	 program 	 	
p(X, f (X))← base(X)
p(X, f (X))← p(Y,X),base(Y)
p(X,Y)← p(f (X), f (Y))

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 66 / 184

Adornment AlgorithmAdornment	 Algorithm	
	 	 	 Original	 program 	 	
p(X, f (X))← base(X)
p(X, f (X))← p(Y,X),base(Y)
p(X,Y)← p(f (X), f (Y))
	 	 	 	 	 	 	 	 	 	 	 	 Adorned	 	 	 	 	 Adornment	

	 	 	 Adorned	 program	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 predicate	 symbols	 	 	 	 	 	 	 	 definiDons	
baseε

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 67 / 184

Adornment AlgorithmAdornment	 Algorithm	
	 	 	 Original	 program 	 	
p(X, f (X))← base(X)
p(X, f (X))← p(Y,X),base(Y)
p(X,Y)← p(f (X), f (Y))
	 	 	 	 	 	 	 	 	 	 	 	 Adorned	 	 	 	 	 Adornment	

	 	 	 Adorned	 program	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 predicate	 symbols	 	 	 	 	 	 	 	 definiDons	
baseε

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 68 / 184

Adornment AlgorithmAdornment	 Algorithm	
	 	 	 Original	 program 	 	
p(X, f (X))← base(X)
p(X, f (X))← p(Y,X),base(Y)
p(X,Y)← p(f (X), f (Y))

pε f1 (X, f (X))← baseε (X)

	 	 	 	 	 	 	 	 	 	 	 	 Adorned	 	 	 	 	 Adornment	
	 	 	 Adorned	 program	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 predicate	 symbols	 	 	 	 	 	 	 	 definiDons	

baseε

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 69 / 184

Adornment AlgorithmAdornment	 Algorithm	
	 	 	 Original	 program 	 	
p(X, f (X))← base(X)
p(X, f (X))← p(Y,X),base(Y)
p(X,Y)← p(f (X), f (Y))

pε f1 (X, f (X))← baseε (X)

	 	 	 	 	 	 	 	 	 	 	 	 Adorned	 	 	 	 	 Adornment	
	 	 	 Adorned	 program	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 predicate	 symbols	 	 	 	 	 	 	 	 definiDons	

baseε

pε f1 f1 = f (ε)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 70 / 184

Adornment AlgorithmAdornment	 Algorithm	
	 	 	 Original	 program 	 	
p(X, f (X))← base(X)
p(X, f (X))← p(Y,X),base(Y)
p(X,Y)← p(f (X), f (Y))

pε f1 (X, f (X))← baseε (X)

	 	 	 	 	 	 	 	 	 	 	 	 Adorned	 	 	 	 	 Adornment	
	 	 	 Adorned	 program	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 predicate	 symbols	 	 	 	 	 	 	 	 definiDons	

baseε

pε f1 f1 = f (ε)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 71 / 184

Adornment AlgorithmAdornment	 Algorithm	
	 	 	 Original	 program 	 	
p(X, f (X))← base(X)
p(X, f (X))← p(Y,X),base(Y)
p(X,Y)← p(f (X), f (Y))

pε f1 (X, f (X))← baseε (X)

	 	 	 	 	 	 	 	 	 	 	 	 Adorned	 	 	 	 	 Adornment	
	 	 	 Adorned	 program	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 predicate	 symbols	 	 	 	 	 	 	 	 definiDons	

baseε

pε f1 f1 = f (ε)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 72 / 184

Adornment AlgorithmAdornment	 Algorithm	
	 	 	 Original	 program 	 	
p(X, f (X))← base(X)
p(X, f (X))← p(Y,X),base(Y)
p(X,Y)← p(f (X), f (Y))

pε f1 (X, f (X))← baseε (X)
p f1 f2 (X, f (X))← pε f1 (Y,X),baseε (Y)

	 	 	 	 	 	 	 	 	 	 	 	 Adorned	 	 	 	 	 Adornment	
	 	 	 Adorned	 program	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 predicate	 symbols	 	 	 	 	 	 	 	 definiDons	

baseε

pε f1 f1 = f (ε)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 73 / 184

Adornment AlgorithmAdornment	 Algorithm	
	 	 	 Original	 program 	 	
p(X, f (X))← base(X)
p(X, f (X))← p(Y,X),base(Y)
p(X,Y)← p(f (X), f (Y))

pε f1 (X, f (X))← baseε (X)
p f1 f2 (X, f (X))← pε f1 (Y,X),baseε (Y)

	 	 	 	 	 	 	 	 	 	 	 	 Adorned	 	 	 	 	 Adornment	
	 	 	 Adorned	 program	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 predicate	 symbols	 	 	 	 	 	 	 	 definiDons	

baseε

pε f1

p f1 f2

f1 = f (ε)
f2 = f (f1)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 74 / 184

Adornment AlgorithmAdornment	 Algorithm	
	 	 	 Original	 program 	 	
p(X, f (X))← base(X)
p(X, f (X))← p(Y,X),base(Y)
p(X,Y)← p(f (X), f (Y))

pε f1 (X, f (X))← baseε (X)
p f1 f2 (X, f (X))← pε f1 (Y,X),baseε (Y)

	 	 	 	 	 	 	 	 	 	 	 	 Adorned	 	 	 	 	 Adornment	
	 	 	 Adorned	 program	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 predicate	 symbols	 	 	 	 	 	 	 	 definiDons	

baseε

pε f1

p f1 f2

f1 = f (ε)
f2 = f (f1)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 75 / 184

Adornment AlgorithmAdornment	 Algorithm	
	 	 	 Original	 program 	 	
p(X, f (X))← base(X)
p(X, f (X))← p(Y,X),base(Y)
p(X,Y)← p(f (X), f (Y))

pε f1 (X, f (X))← baseε (X)
p f1 f2 (X, f (X))← pε f1 (Y,X),baseε (Y)

	 	 	 	 	 	 	 	 	 	 	 	 Adorned	 	 	 	 	 Adornment	
	 	 	 Adorned	 program	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 predicate	 symbols	 	 	 	 	 	 	 	 definiDons	

baseε

pε f1

p f1 f2

f1 = f (ε)
f2 = f (f1)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 76 / 184

Adornment AlgorithmAdornment	 Algorithm	
	 	 	 Original	 program 	 	
p(X, f (X))← base(X)
p(X, f (X))← p(Y,X),base(Y)
p(X,Y)← p(f (X), f (Y))

pε f1 (X, f (X))← baseε (X)
p f1 f2 (X, f (X))← pε f1 (Y,X),baseε (Y)
pε f1 (X,Y)← p f1 f2 (f (X), f (Y))

	 	 	 	 	 	 	 	 	 	 	 	 Adorned	 	 	 	 	 Adornment	
	 	 	 Adorned	 program	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 predicate	 symbols	 	 	 	 	 	 	 	 definiDons	

baseε

pε f1

p f1 f2

f1 = f (ε)
f2 = f (f1)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 77 / 184

Adornment AlgorithmAdornment	 Algorithm	
	 	 	 Original	 program 	 	
p(X, f (X))← base(X)
p(X, f (X))← p(Y,X),base(Y)
p(X,Y)← p(f (X), f (Y))

pε f1 (X, f (X))← baseε (X)
p f1 f2 (X, f (X))← pε f1 (Y,X),baseε (Y)
pε f1 (X,Y)← p f1 f2 (f (X), f (Y))

	 	 	 	 	 	 	 	 	 	 	 	 Adorned	 	 	 	 	 Adornment	
	 	 	 Adorned	 program	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 predicate	 symbols	 	 	 	 	 	 	 	 definiDons	

baseε

pε f1

p f1 f2

f1 = f (ε)
f2 = f (f1)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 78 / 184

Adornment AlgorithmAdornment	 Algorithm	
	 	 	 Original	 program 	 	
p(X, f (X))← base(X)
p(X, f (X))← p(Y,X),base(Y)
p(X,Y)← p(f (X), f (Y))

pε f1 (X, f (X))← baseε (X)
p f1 f2 (X, f (X))← pε f1 (Y,X),baseε (Y)
pε f1 (X,Y)← p f1 f2 (f (X), f (Y))

	 	 	 	 	 	 	 	 	 	 	 	 Adorned	 	 	 	 	 Adornment	
	 	 	 Adorned	 program	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 predicate	 symbols	 	 	 	 	 	 	 	 definiDons	

baseε

pε f1

p f1 f2

f1 = f (ε)
f2 = f (f1)

The	 adornment	 algorithm	 terminates	 because	 no	 new	 coherently	
adorned	 body	 conjunc+on	 can	 be	 generated.	

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 79 / 184

Adornment AlgorithmAdornment	 Algorithm	
	 	 	 Original	 program 	 	
p(X, f (X))← base(X)
p(X, f (X))← p(Y,X),base(Y)
p(X,Y)← p(f (X), f (Y))

pε f1 (X, f (X))← baseε (X)
p f1 f2 (X, f (X))← pε f1 (Y,X),baseε (Y)
pε f1 (X,Y)← p f1 f2 (f (X), f (Y))

	 	 	 	 	 	 	 	 	 	 	 	 Adorned	 	 	 	 	 Adornment	
	 	 	 Adorned	 program	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 predicate	 symbols	 	 	 	 	 	 	 	 definiDons	

baseε

pε f1

p f1 f2

f1 = f (ε)
f2 = f (f1)

	 	 	 	 	 	 	 	 	 is	 not	 coherently	 adorned	 because	 Y	 is	 associated	
with	 the	 two	 different	 adornment	 symbols	 f1	 and	 ε	 	

p f1 f2 (Y,X),baseε (Y)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 80 / 184

Properties
Theorem
The adornment algorithm always terminates.

Theorem
Let P be a program and Pµ the adorned version of P. Then, the least
model of P is equal to the least model of Pµ with adornments dropped
from predicates.

Theorem
Let P be a program and Pµ the adorned version of P. If Pµ satisfies a
termination criterion C, then the evaluation of P ∪ D terminates for any
finite set of (flat) database facts D.

Theorem
By applying a termination criterion to adorned programs we are able to
identify more programs whose evaluation terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 81 / 184

Properties
Theorem
The adornment algorithm always terminates.

Theorem
Let P be a program and Pµ the adorned version of P. Then, the least
model of P is equal to the least model of Pµ with adornments dropped
from predicates.

Theorem
Let P be a program and Pµ the adorned version of P. If Pµ satisfies a
termination criterion C, then the evaluation of P ∪ D terminates for any
finite set of (flat) database facts D.

Theorem
By applying a termination criterion to adorned programs we are able to
identify more programs whose evaluation terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 81 / 184

Properties
Theorem
The adornment algorithm always terminates.

Theorem
Let P be a program and Pµ the adorned version of P. Then, the least
model of P is equal to the least model of Pµ with adornments dropped
from predicates.

Theorem
Let P be a program and Pµ the adorned version of P. If Pµ satisfies a
termination criterion C, then the evaluation of P ∪ D terminates for any
finite set of (flat) database facts D.

Theorem
By applying a termination criterion to adorned programs we are able to
identify more programs whose evaluation terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 81 / 184

Properties
Theorem
The adornment algorithm always terminates.

Theorem
Let P be a program and Pµ the adorned version of P. Then, the least
model of P is equal to the least model of Pµ with adornments dropped
from predicates.

Theorem
Let P be a program and Pµ the adorned version of P. If Pµ satisfies a
termination criterion C, then the evaluation of P ∪ D terminates for any
finite set of (flat) database facts D.

Theorem
By applying a termination criterion to adorned programs we are able to
identify more programs whose evaluation terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 81 / 184

Dealing with Negation and Disjunction

Definition
A Datalog∨,¬ rule is of the form

A1 ∨ · · · ∨ Am ← B1, . . . ,Bk ,¬C1, . . . ,¬Cn

where m > 0, k ≥ 0, n ≥ 0, and the Ai ’s, Bi ’s, Ci ’s are atoms.

A Datalog∨,¬ program is a finite set of Datalog∨,¬ rules.

Semantics: Stable Model Sematics.

We want to check if a Datalog∨,¬ program has a finite number of stable
models, each of finite size and that can be computed.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 82 / 184

Dealing with Negation and Disjunction

Definition
A Datalog∨,¬ rule is of the form

A1 ∨ · · · ∨ Am ← B1, . . . ,Bk ,¬C1, . . . ,¬Cn

where m > 0, k ≥ 0, n ≥ 0, and the Ai ’s, Bi ’s, Ci ’s are atoms.

A Datalog∨,¬ program is a finite set of Datalog∨,¬ rules.

Semantics: Stable Model Sematics.

We want to check if a Datalog∨,¬ program has a finite number of stable
models, each of finite size and that can be computed.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 82 / 184

Dealing with Negation and Disjunction

Definition
A Datalog∨,¬ rule is of the form

A1 ∨ · · · ∨ Am ← B1, . . . ,Bk ,¬C1, . . . ,¬Cn

where m > 0, k ≥ 0, n ≥ 0, and the Ai ’s, Bi ’s, Ci ’s are atoms.

A Datalog∨,¬ program is a finite set of Datalog∨,¬ rules.

Semantics: Stable Model Sematics.

We want to check if a Datalog∨,¬ program has a finite number of stable
models, each of finite size and that can be computed.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 82 / 184

Dealing with Negation and Disjunction

We want to check if a Datalog∨,¬ program P has a finite number of
stable models, each of finite size and that can be computed.

We derive a Datalog program st(P) from P as follows.

Each rule
A1 ∨ · · · ∨ Am ← B1, . . . ,Bk ,¬C1, . . . ,¬Cn

in P is replaced with m Datalog rules

Ai ← B1, . . . ,Bk 1 ≤ i ≤ m

Proposition
If st(P) satisfies a termination criterion, then P has a finite number of
stable models, each of them is of finite size and can be computed.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 83 / 184

Dealing with Negation and Disjunction

We want to check if a Datalog∨,¬ program P has a finite number of
stable models, each of finite size and that can be computed.

We derive a Datalog program st(P) from P as follows.
Each rule

A1 ∨ · · · ∨ Am ← B1, . . . ,Bk ,¬C1, . . . ,¬Cn

in P is replaced with m Datalog rules

Ai ← B1, . . . ,Bk 1 ≤ i ≤ m

Proposition
If st(P) satisfies a termination criterion, then P has a finite number of
stable models, each of them is of finite size and can be computed.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 83 / 184

Dealing with Negation and Disjunction

We want to check if a Datalog∨,¬ program P has a finite number of
stable models, each of finite size and that can be computed.

We derive a Datalog program st(P) from P as follows.
Each rule

A1 ∨ · · · ∨ Am ← B1, . . . ,Bk ,¬C1, . . . ,¬Cn

in P is replaced with m Datalog rules

Ai ← B1, . . . ,Bk 1 ≤ i ≤ m

Proposition
If st(P) satisfies a termination criterion, then P has a finite number of
stable models, each of them is of finite size and can be computed.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 83 / 184

Conclusions

The evaluation of logic programs with function symbols might not
terminate, and establishing termination is not decidable.
One solution: (Sufficient) Termination Conditions.
Related lines of research:

I Ensure decidability of some reasoning tasks even if there might be
infinite and infinitely many stable models (e.g., FDNC programs
[ES10, Bon11], Finitary Programs [Bon04], Finitely Recursive
Programs [BBC09]).

I Finite well-founded model [RS14].

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 84 / 184

Directions for Future Work
1 Combining termination criteria.

One approach: identify arguments that are “limited” even when
the program is not entirely recognized as terminating.

I support the user in the problem formulation;
I provide limited arguments to other techniques which can leverage

this kind of information.

2 Exploiting negation and disjunction.

Example

p(f (X))← p(X),¬p(X)

will be analyzed like

p(f (X))← p(X),���
�¬p(X)

3 Interpreted function symbols.
4 Testing Local Stratification.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 85 / 184

Directions for Future Work
1 Combining termination criteria.

One approach: identify arguments that are “limited” even when
the program is not entirely recognized as terminating.

I support the user in the problem formulation;
I provide limited arguments to other techniques which can leverage

this kind of information.
2 Exploiting negation and disjunction.

Example

p(f (X))← p(X),¬p(X)

will be analyzed like

p(f (X))← p(X),���
�¬p(X)

3 Interpreted function symbols.
4 Testing Local Stratification.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 85 / 184

Directions for Future Work
1 Combining termination criteria.

One approach: identify arguments that are “limited” even when
the program is not entirely recognized as terminating.

I support the user in the problem formulation;
I provide limited arguments to other techniques which can leverage

this kind of information.
2 Exploiting negation and disjunction.

Example

p(f (X))← p(X),¬p(X)

will be analyzed like

p(f (X))← p(X),���
�¬p(X)

3 Interpreted function symbols.

4 Testing Local Stratification.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 85 / 184

Directions for Future Work
1 Combining termination criteria.

One approach: identify arguments that are “limited” even when
the program is not entirely recognized as terminating.

I support the user in the problem formulation;
I provide limited arguments to other techniques which can leverage

this kind of information.
2 Exploiting negation and disjunction.

Example

p(f (X))← p(X),¬p(X)

will be analyzed like

p(f (X))← p(X),���
�¬p(X)

3 Interpreted function symbols.
4 Testing Local Stratification.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 85 / 184

Thanks!

Questions?

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 86 / 184

Part II

Existential Rules

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 87 / 184

Existential rules

Special rules whose head atoms:
may have existentially quantified variables,
may be equality conditions (between two variables).

Used in a variety of contexts:

in databases to define integrity constraints;

in data integration and data exchange to define schema
mappings;

for knowledge representation and ontological reasoning
(Datalog±).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 88 / 184

Existential rules

Special rules whose head atoms:
may have existentially quantified variables,
may be equality conditions (between two variables).

Used in a variety of contexts:

in databases to define integrity constraints;

in data integration and data exchange to define schema
mappings;

for knowledge representation and ontological reasoning
(Datalog±).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 88 / 184

Integrity constraints in databases

Example

emp(Emp#,Name,Address) worksFor(Emp#,Prj#)

Inclusion dependencies and foreign keys:

worksFor(E ,P)→ ∃N ∃A emp(E ,N,A)

Functional Dependencies and internal keys

emp(E ,N1,Pr1) ∧ emp(E ,N2,Pr2)→ N1 = N2

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 89 / 184

Integrity constraints in databases

Example

emp(Emp#,Name,Address) worksFor(Emp#,Prj#)

Inclusion dependencies and foreign keys:

worksFor(E ,P)→ ∃N ∃A emp(E ,N,A)

Functional Dependencies and internal keys

emp(E ,N1,Pr1) ∧ emp(E ,N2,Pr2)→ N1 = N2

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 89 / 184

Schema Mappings in Data Exchange

Data Exchange: Transform data structured under a source schema
into data structured under a different target schema.

Example

Company A Company B

empA(Emp#,Name,Address,Salary) empB(Emp#,Name,Phone,Salary)

Company A is acquired by Company B

empA(E ,N,A,S)→ ∃P empB(E ,N,P,S)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 90 / 184

Schema Mappings in Data Exchange

Data Exchange: Transform data structured under a source schema
into data structured under a different target schema.

Example

Company A Company B

empA(Emp#,Name,Address,Salary) empB(Emp#,Name,Phone,Salary)

Company A is acquired by Company B

empA(E ,N,A,S)→ ∃P empB(E ,N,P,S)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 90 / 184

Encoding Ontologies
Plain Datalog allows for encoding some ontological axioms:
TGDs can also express other important ontological axioms:

Concept Inclusions:
∀X emp(X)→ person(X)

(Inverse) Relation Inclusion:
∀X ∀Y manages(X ,Y)→ isManaged(Y ,X)

Relation Transitivity:
∀X ∀Y ∀Z mgs(X ,Y),mgs(Y ,Z)→ mgs(X ,Z)

Participation:
∀X emp(X)→ ∃Y report(X ,Y)

Disjointness:
∀X emp(X), customer(X)→ false

Functionality:
∀X ∀Y ∀Z reports(X ,Y), reports(X ,Z)→ Y = Z

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 91 / 184

Encoding Ontologies
Plain Datalog allows for encoding some ontological axioms:
TGDs can also express other important ontological axioms:

Concept Inclusions:
∀X emp(X)→ person(X)

(Inverse) Relation Inclusion:
∀X ∀Y manages(X ,Y)→ isManaged(Y ,X)

Relation Transitivity:
∀X ∀Y ∀Z mgs(X ,Y),mgs(Y ,Z)→ mgs(X ,Z)

Participation:
∀X emp(X)→ ∃Y report(X ,Y)

Disjointness:
∀X emp(X), customer(X)→ false

Functionality:
∀X ∀Y ∀Z reports(X ,Y), reports(X ,Z)→ Y = Z

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 91 / 184

The Problem

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 92 / 184

Answering queries under constraints

The Problem
Input:

A database D (set of ground facts),
A set of data dependencies (integrity constraints) Σ,
A (boolean) conjunctive query Q

Question:
D ∪ Σ |= Q

Very old problem: CQ answering over incomplete databases

Undecidable in the general case

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 93 / 184

Answering queries under constraints

The Problem
Input:

A database D (set of ground facts),
A set of data dependencies (integrity constraints) Σ,
A (boolean) conjunctive query Q

Question:
D ∪ Σ |= Q

Very old problem: CQ answering over incomplete databases

Undecidable in the general case

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 93 / 184

Answering queries under constraints

The Problem
Input:

A database D (set of ground facts),
A set of data dependencies (integrity constraints) Σ,
A (boolean) conjunctive query Q

Question:
D ∪ Σ |= Q

Very old problem: CQ answering over incomplete databases

Undecidable in the general case

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 93 / 184

Answering queries under constraints

The Problem
Data dependencies:

Tuple generating dependencies (TGDs):

∀X ∀Y ϕ(X ,Y)→ ∃Z ψ(X ,Z)

Equality generating dependencies (EGDs):

∀X ϕ(X)→ X1 = X2

ϕ(X ,Y), ϕ(X) and ψ(Z ,X) are conjunctions of atoms, X1,X2 ∈ X .

K = D ∪ Σ is called knowledge base.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 94 / 184

Answering queries under constraints

The Problem
Data dependencies:

Tuple generating dependencies (TGDs):

∀X ∀Y ϕ(X ,Y)→ ∃Z ψ(X ,Z)

Equality generating dependencies (EGDs):

∀X ϕ(X)→ X1 = X2

ϕ(X ,Y), ϕ(X) and ψ(Z ,X) are conjunctions of atoms, X1,X2 ∈ X .

K = D ∪ Σ is called knowledge base.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 94 / 184

Answering queries under constraints
Example (Models and answers)

Database: D = {person(john)}
Data dependencies Σ:

∀X person(X)→ ∃Z fatherOf (Z ,X)
∀X ∀Y fatherOf (X ,Y),person(Y)→ person(X)

Queries:
Q1 = ∃X fatherOf (X , john)
Q2 = ∃X fatherOf (john,X)

Answers:

D ∪ Σ |= Q1 certain(Q1, (D,Σ)) = ”yes”
D ∪ Σ 6|= Q2 certain(Q2, (D,Σ)) = ”no”

All models of D ∪ Σ contain an atom fatherOf (x , john),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 95 / 184

Answering queries under constraints
Example (Models and answers)

Database: D = {person(john)}
Data dependencies Σ:

∀X person(X)→ ∃Z fatherOf (Z ,X)
∀X ∀Y fatherOf (X ,Y),person(Y)→ person(X)

Queries:
Q1 = ∃X fatherOf (X , john)
Q2 = ∃X fatherOf (john,X)

Answers:

D ∪ Σ |= Q1 certain(Q1, (D,Σ)) = ”yes”
D ∪ Σ 6|= Q2 certain(Q2, (D,Σ)) = ”no”

All models of D ∪ Σ contain an atom fatherOf (x , john),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 95 / 184

Answering queries under constraints
Example (Models and answers)

Database: D = {person(john)}
Data dependencies Σ:

∀X person(X)→ ∃Z fatherOf (Z ,X)
∀X ∀Y fatherOf (X ,Y),person(Y)→ person(X)

Queries:
Q1 = ∃X fatherOf (X , john)
Q2 = ∃X fatherOf (john,X)

Answers:

D ∪ Σ |= Q1 certain(Q1, (D,Σ)) = ”yes”
D ∪ Σ 6|= Q2 certain(Q2, (D,Σ)) = ”no”

All models of D ∪ Σ contain an atom fatherOf (x , john),
S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 95 / 184

Datalog± (Syntax)

Datalog variant for ontological reasoning allowing in the head:
existential variables (TGDs)
Equality atoms (EGDs)
Constant false (Denial constraints)

Also denoted as Datalog[∃,=,F]

More expressive than several ontological reasoning languages (e.g.
UML Class Diagrams, DL-Lite, ELHI¬, F-Logic Lite).

Query answering under Datalog± is undecidable

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 96 / 184

Query answering is undecidable

⇒

Determine decidable classes of queries

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 97 / 184

Answering queries over incomplete databases

Definition (Incomplete databases/Naive tables)
Databases may be incomplete, that is may contain (labeled) nulls (of
the form ⊥i), representing the presence of unknown values.

Definition (Possible worlds (under CWA))
Given a possibly incomplete database D, POSS(D) denotes the set of
ground databases obtained from D by replacing nulls with constants.

Example (POSS(D))
D = {person(john),person(frank), fatherOf (⊥1, john)}
POSS(D) (under CWA) contains:

I {person(john),person(frank), fatherOf (john, john)}
I {person(john),person(frank), fatherOf (frank , john)}

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 98 / 184

Answering queries over incomplete databases

Definition (Incomplete databases/Naive tables)
Databases may be incomplete, that is may contain (labeled) nulls (of
the form ⊥i), representing the presence of unknown values.

Definition (Possible worlds (under CWA))
Given a possibly incomplete database D, POSS(D) denotes the set of
ground databases obtained from D by replacing nulls with constants.

Example (POSS(D))
D = {person(john),person(frank), fatherOf (⊥1, john)}
POSS(D) (under CWA) contains:

I {person(john),person(frank), fatherOf (john, john)}
I {person(john),person(frank), fatherOf (frank , john)}

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 98 / 184

Answering queries over incomplete databases

Definition (Incomplete databases/Naive tables)
Databases may be incomplete, that is may contain (labeled) nulls (of
the form ⊥i), representing the presence of unknown values.

Definition (Possible worlds (under CWA))
Given a possibly incomplete database D, POSS(D) denotes the set of
ground databases obtained from D by replacing nulls with constants.

Example (POSS(D))
D = {person(john),person(frank), fatherOf (⊥1, john)}

POSS(D) (under CWA) contains:
I {person(john),person(frank), fatherOf (john, john)}
I {person(john),person(frank), fatherOf (frank , john)}

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 98 / 184

Answering queries over incomplete databases

Definition (Incomplete databases/Naive tables)
Databases may be incomplete, that is may contain (labeled) nulls (of
the form ⊥i), representing the presence of unknown values.

Definition (Possible worlds (under CWA))
Given a possibly incomplete database D, POSS(D) denotes the set of
ground databases obtained from D by replacing nulls with constants.

Example (POSS(D))
D = {person(john),person(frank), fatherOf (⊥1, john)}
POSS(D) (under CWA) contains:

I {person(john),person(frank), fatherOf (john, john)}
I {person(john),person(frank), fatherOf (frank , john)}

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 98 / 184

Answering queries over incomplete databases

Definition (certain answer)
certain(D) = database derived from D by deleting tuples with
nulls.
certain(Q,D) =

⋂{ Q(R) | R ∈ POSS(D) }

Theorem (weak representation systems)
For union of conjunctive queries

certain(Q(D)) = certain(Q,D)

Certain answers can be computed by
1 Evaluating (naively) Q(D)

2 Removing tuples with nulls

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 99 / 184

Answering queries over incomplete databases

Definition (certain answer)
certain(D) = database derived from D by deleting tuples with
nulls.
certain(Q,D) =

⋂{ Q(R) | R ∈ POSS(D) }

Theorem (weak representation systems)
For union of conjunctive queries

certain(Q(D)) = certain(Q,D)

Certain answers can be computed by
1 Evaluating (naively) Q(D)

2 Removing tuples with nulls

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 99 / 184

Answering queries under constraints

Definition (Model)
Given a knowledge base K = D ∪ Σ, M is a model of K if M |= K .

Definition (Homomorphism)
Mapping h : Nulls → Nulls ∪ Constants.

Definition (Possible worlds under OWA)
POSS(M) = { R | h(M) ⊆ R ∧ R is ground }.

Definition (certain answer)
certain(Q, (D,Σ)) =

⋂{Q(R) |R ∈ POSS(M) ∧M is a model of D ∪ Σ }

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 100 / 184

Answering queries under constraints

Definition (Model)
Given a knowledge base K = D ∪ Σ, M is a model of K if M |= K .

Definition (Homomorphism)
Mapping h : Nulls → Nulls ∪ Constants.

Definition (Possible worlds under OWA)
POSS(M) = { R | h(M) ⊆ R ∧ R is ground }.

Definition (certain answer)
certain(Q, (D,Σ)) =

⋂{Q(R) |R ∈ POSS(M) ∧M is a model of D ∪ Σ }

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 100 / 184

Answering queries under constraints

Definition (Model)
Given a knowledge base K = D ∪ Σ, M is a model of K if M |= K .

Definition (Homomorphism)
Mapping h : Nulls → Nulls ∪ Constants.

Definition (Possible worlds under OWA)
POSS(M) = { R | h(M) ⊆ R ∧ R is ground }.

Definition (certain answer)
certain(Q, (D,Σ)) =

⋂{Q(R) |R ∈ POSS(M) ∧M is a model of D ∪ Σ }

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 100 / 184

Universal models

Definition (Models comparison)
Given two models M1 and M2 we say that M1 is at least as general as
M2 (M1 w M2) if ∃h such that h(M1) ⊆ M2.
M1 is more general than M2 (M1 = M2) if M1 w M2 and M2 6w M1.

Theorem
M1 w M2 iff POSS(M1) ⊇ POSS(M2),
M1 ⊆ M2 ⇒ M1 w M2.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 101 / 184

Universal models

Definition (Models comparison)
Given two models M1 and M2 we say that M1 is at least as general as
M2 (M1 w M2) if ∃h such that h(M1) ⊆ M2.
M1 is more general than M2 (M1 = M2) if M1 w M2 and M2 6w M1.

Theorem
M1 w M2 iff POSS(M1) ⊇ POSS(M2),
M1 ⊆ M2 ⇒ M1 w M2.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 101 / 184

Universal models

Definition (Universal model)
M is an universal model (or universal solution) if for every model N,
M w N (i.e. ∃h s.t . h(M) ⊆ N).

Theorem (Main Th.)
For every UCQ Q and for every arbitrary universal model M of D ∪ Σ

certain(Q, (D,Σ)) = certain(Q,M) = certain(Q(M))

Recall that:

certain(Q, (D,Σ) =
⋂
{Q(R) |R ∈ POSS(M) ∧M is a model of D∪Σ }

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 102 / 184

Universal models

Definition (Universal model)
M is an universal model (or universal solution) if for every model N,
M w N (i.e. ∃h s.t . h(M) ⊆ N).

Theorem (Main Th.)
For every UCQ Q and for every arbitrary universal model M of D ∪ Σ

certain(Q, (D,Σ)) = certain(Q,M) = certain(Q(M))

Recall that:

certain(Q, (D,Σ) =
⋂
{Q(R) |R ∈ POSS(M) ∧M is a model of D∪Σ }

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 102 / 184

Universal models
Example (Models and answers)

Database: D = {person(john)}
Data dependencies Σ:

∀X person(X)→ ∃Z fatherOf (Z ,X)
∀X ∀Y fatherOf (X ,Y),person(Y)→ person(X)

Models (under OWA):

M1 = {person(john), fatherOf (john, john)}
M2 = {person(john), fatherOf (⊥1, john),person(⊥1)}
M3 = {person(john), fatherOf (⊥2, john),person(⊥2)}
M4 = {person(john), fatherOf (⊥1, john),person(frank)}
...

M2 = M1, M2 = M4, M2 w M3, M3 = M1, M3 = M4, M3 w M2
M2 and M3 are universal models.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 103 / 184

Universal models
Example (Models and answers)

Database: D = {person(john)}
Data dependencies Σ:

∀X person(X)→ ∃Z fatherOf (Z ,X)
∀X ∀Y fatherOf (X ,Y),person(Y)→ person(X)

Models (under OWA):

M1 = {person(john), fatherOf (john, john)}
M2 = {person(john), fatherOf (⊥1, john),person(⊥1)}
M3 = {person(john), fatherOf (⊥2, john),person(⊥2)}
M4 = {person(john), fatherOf (⊥1, john),person(frank)}
...

M2 = M1, M2 = M4, M2 w M3, M3 = M1, M3 = M4, M3 w M2
M2 and M3 are universal models.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 103 / 184

The Chase

Fixpoint algorithm designed to enforce satisfaction of dependencies.

The execution of the chase involves
adding new facts (possibly with null values) to satisfy TGDs,
replacing nulls (with constants or other null values) to satisfy
EGDs.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 104 / 184

The Chase

Several problems can be solved using the chase algorithm:
Checking query containment under dependencies
Checking implication of dependencies
Checking lossless decomposition of database schema
Computing universal solutions in data exchange
Computing certain answers in data integration
Ontology Querying
Database repair
...

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 105 / 184

The Chase
Chase algorithm chase(D,Σ)

Iteratively, let K be the current instance (K = D at step 0),
select nondeterministically a constraint r ∈ Σ and an
homomorphism h such that K 6|= h(r) (i.e. K |= body(h(r)) and
there is no estension h′ of h such that K |= head(h′(r))).
enforce the satisfaction of h(r) by either i) adding a tuple (if r is a
TGD), or ii) replacing a null value (if r is an EGD), or ”fail” (if r is an
EGD which cannot be enforced).

A chase step from K1 and r1 with homomorphism h to K2 is denoted as
K1→r1,h1K2.

The result of chase(D,Σ) is nondeterministic and is either
a (possibly infinite) universal model;
fail, if D ∪ Σ does not have universal models.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 106 / 184

Chase - Enforcing data dependencies: a first example

Example

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
S(a) S(X) ∧ E(X ,Y)→ N(Y)

chase(D,Σ) = {N(a),S(a)

All TGDs are satisfied: STOP.

This and every other chase sequence terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 107 / 184

Chase - Enforcing data dependencies: a first example

Example

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
S(a) S(X) ∧ E(X ,Y)→ N(Y)

chase(D,Σ) = {N(a),S(a)

All TGDs are satisfied: STOP.

This and every other chase sequence terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 107 / 184

Chase - Enforcing data dependencies: a first example

Example

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
S(a) S(X) ∧ E(X ,Y)→ N(Y)

chase(D,Σ) = { N(a), S(a)

All TGDs are satisfied: STOP.

This and every other chase sequence terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 108 / 184

Chase - Enforcing data dependencies: a first example

Example

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
S(a) S(X) ∧ E(X ,Y)→ N(Y)

chase(D,Σ) = { N(a), S(a), E(a,⊥1)

All TGDs are satisfied: STOP.

This and every other chase sequence terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 109 / 184

Chase - Enforcing data dependencies: a first example

Example

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
S(a) S(X) ∧ E(X ,Y)→ N(Y)

chase(D,Σ) = { N(a), S(a), E(a,⊥1)

All TGDs are satisfied: STOP.

This and every other chase sequence terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 110 / 184

Chase - Enforcing data dependencies: a first example

Example

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
S(a) S(X) ∧ E(X ,Y)→ N(Y)

chase(D,Σ) = { N(a), S(a), E(a,⊥1), N(⊥1)

All TGDs are satisfied: STOP.

This and every other chase sequence terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 111 / 184

Chase - Enforcing data dependencies: a first example

Example

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
S(a) S(X) ∧ E(X ,Y)→ N(Y)

chase(D,Σ) = { N(a), S(a), E(a,⊥1), N(⊥1)

, E(⊥1,⊥2)

All TGDs are satisfied: STOP.

This and every other chase sequence terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 112 / 184

Chase - Enforcing data dependencies: a first example

Example

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
S(a) S(X) ∧ E(X ,Y)→ N(Y)

chase(D,Σ) = { N(a), S(a), E(a,⊥1), N(⊥1), E(⊥1,⊥2)

All TGDs are satisfied: STOP.

This and every other chase sequence terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 112 / 184

Chase - Enforcing data dependencies: a first example

Example

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
S(a) S(X) ∧ E(X ,Y)→ N(Y)

chase(D,Σ) = { N(a), S(a), E(a,⊥1), N(⊥1), E(⊥1,⊥2)

}

All dependencies are satisfied: STOP.

This and every other chase sequence terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 113 / 184

Chase - Enforcing data dependencies: a first example

Example

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
S(a) S(X) ∧ E(X ,Y)→ N(Y)

chase(D,Σ) = { N(a), S(a), E(a,⊥1), N(⊥1), E(⊥1,⊥2) }

All dependencies are satisfied: STOP.

This and every other chase sequence terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 113 / 184

Chase - Enforcing data dependencies: a first example

Example

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
S(a) S(X) ∧ E(X ,Y)→ N(Y)

chase(D,Σ) = { N(a), S(a), E(a,⊥1), N(⊥1), E(⊥1,⊥2) }

All dependencies are satisfied: STOP.

This and every other chase sequence terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 113 / 184

Chase - Enforcing data dependencies: a first example

Example

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
S(a) ��

�S(X)∧ E(X ,Y)→ N(Y)

chase(D,Σ) = { N(a), S(a), E(a,⊥1), N(⊥1), E(⊥1,⊥2)

. . .}

There is no terminating chase sequence.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 114 / 184

Chase - Enforcing data dependencies: a first example

Example

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
S(a) ��

�S(X)∧ E(X ,Y)→ N(Y)

chase(D,Σ) = { N(a), S(a), E(a,⊥1), N(⊥1), E(⊥1,⊥2)

. . .}

There is no terminating chase sequence.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 114 / 184

Chase - Enforcing data dependencies: a first example

Example

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
S(a) ��

�S(X)∧ E(X ,Y)→ N(Y)

chase(D,Σ) = { N(a), S(a), E(a,⊥1), N(⊥1), E(⊥1,⊥2), N(⊥2),

. . .}

There is no terminating chase sequence.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 114 / 184

Chase - Enforcing data dependencies: a first example

Example

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
S(a) ��

�S(X)∧ E(X ,Y)→ N(Y)

chase(D,Σ) = { N(a), S(a), E(a,⊥1), N(⊥1), E(⊥1,⊥2), N(⊥2), . . .}

There is no terminating chase sequence.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 114 / 184

Chase – Terminating Sequence

Example (∃ a finite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :

flight(a,⊥1)
airport(⊥1)
flight(⊥1,a)

No further rule is applicable: STOP.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 115 / 184

Chase – Terminating Sequence

Example (∃ a finite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :

flight(a,⊥1)
airport(⊥1)
flight(⊥1,a)

No further rule is applicable: STOP.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 115 / 184

Chase – Terminating Sequence

Example (∃ a finite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :

flight(a,⊥1)
airport(⊥1)
flight(⊥1,a)

No further rule is applicable: STOP.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 115 / 184

Chase – Terminating Sequence

Example (∃ a finite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)

airport(⊥1)
flight(⊥1,a)

No further rule is applicable: STOP.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 115 / 184

Chase – Terminating Sequence

Example (∃ a finite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)

airport(⊥1)
flight(⊥1,a)

No further rule is applicable: STOP.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 115 / 184

Chase – Terminating Sequence

Example (∃ a finite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)

airport(⊥1)
flight(⊥1,a)

No further rule is applicable: STOP.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 115 / 184

Chase – Terminating Sequence

Example (∃ a finite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)

airport(⊥1)
flight(⊥1,a)

No further rule is applicable: STOP.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 115 / 184

Chase – Terminating Sequence

Example (∃ a finite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)

airport(⊥1)
flight(⊥1,a)

No further rule is applicable: STOP.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 115 / 184

Chase – Terminating Sequence

Example (∃ a finite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)
airport(⊥1)

flight(⊥1,a)

No further rule is applicable: STOP.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 115 / 184

Chase – Terminating Sequence

Example (∃ a finite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)
airport(⊥1)

flight(⊥1,a)

No further rule is applicable: STOP.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 115 / 184

Chase – Terminating Sequence

Example (∃ a finite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)
airport(⊥1)

flight(⊥1,a)

No further rule is applicable: STOP.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 115 / 184

Chase – Terminating Sequence

Example (∃ a finite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)
airport(⊥1)

flight(⊥1,a)

No further rule is applicable: STOP.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 115 / 184

Chase – Terminating Sequence

Example (∃ a finite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)
airport(⊥1)
flight(⊥1,a)

No further rule is applicable: STOP.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 115 / 184

Chase – Terminating Sequence

Example (∃ a finite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)
airport(⊥1)
flight(⊥1,a)

No further rule is applicable: STOP.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 115 / 184

Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :

flight(a,⊥1)
airport(⊥1)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 116 / 184

Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :

flight(a,⊥1)
airport(⊥1)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 116 / 184

Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :

flight(a,⊥1)
airport(⊥1)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 116 / 184

Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)

airport(⊥1)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 116 / 184

Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)

airport(⊥1)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 116 / 184

Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)

airport(⊥1)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 116 / 184

Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)

airport(⊥1)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 116 / 184

Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)

airport(⊥1)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 116 / 184

Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)
airport(⊥1)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 116 / 184

Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)
airport(⊥1)

flight(⊥1,⊥2)
airport(⊥2)

...

By iteratively applying r1 and r2 the chase never terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 117 / 184

Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)
airport(⊥1)

flight(⊥1,⊥2)
airport(⊥2)

...

By iteratively applying r1 and r2 the chase never terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 117 / 184

Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)
airport(⊥1)

flight(⊥1,⊥2)
airport(⊥2)

...

By iteratively applying r1 and r2 the chase never terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 117 / 184

Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)
airport(⊥1)
flight(⊥1,⊥2)

airport(⊥2)
...

By iteratively applying r1 and r2 the chase never terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 117 / 184

Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)
airport(⊥1)
flight(⊥1,⊥2)

airport(⊥2)
...

By iteratively applying r1 and r2 the chase never terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 117 / 184

Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)
airport(⊥1)
flight(⊥1,⊥2)

airport(⊥2)
...

By iteratively applying r1 and r2 the chase never terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 117 / 184

Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)
airport(⊥1)
flight(⊥1,⊥2)

airport(⊥2)
...

By iteratively applying r1 and r2 the chase never terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 117 / 184

Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)
airport(⊥1)
flight(⊥1,⊥2)

airport(⊥2)
...

By iteratively applying r1 and r2 the chase never terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 117 / 184

Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)
airport(⊥1)
flight(⊥1,⊥2)
airport(⊥2)

...

By iteratively applying r1 and r2 the chase never terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 117 / 184

Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X)→ ∃Y flight(X ,Y)
r2 : flight(X ,Y)→ airport(X) ∧ airport(Y)
r3 : flight(X ,Y)→ flight(Y ,X)

The following facts are added to D :
flight(a,⊥1)
airport(⊥1)
flight(⊥1,⊥2)
airport(⊥2)

...

By iteratively applying r1 and r2 the chase never terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 117 / 184

Chase Termination

Checking whether there is at least one terminating chase
sequence vs. all chase sequences are terminating;
for a given instance D vs. for every instance.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 118 / 184

Chase Termination

Theorem
Consider a set Σ of TGDs:

It is undecidable whether, for every instance D, some chase
sequence of D with Σ terminates [GO13].
It is undecidable whether, for every instance D, all chase
sequences of D with Σ terminate [GM14].

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 119 / 184

Chase Termination

Theorem ([DNR08])
Given a set Σ of TGDs and a (fixed) instance D:

It is undecidable whether some chase sequence of D with Σ
terminates.
It is undecidable whether all chase sequences of D with Σ
terminate.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 120 / 184

Sufficient Conditions

One Solution: Identify sufficient conditions guaranteeing chase
termination.

Many have been proposed:

Weak Acyclicity [FKMP05]
Stratification [DNR08] and C-Stratification [MSL09]
Safety and Inductive Restriction [MSL09]
Super-weak Acyclicity [Mar09]
Local Stratification [GST11, GST15]
Adornment Techniques [GS10, GST15]
Model-Faithful Acyclicity [GHK+13]
Acyclic Graph Rule Dependencies [BLMS11]

From now on we consider only TGDs

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 121 / 184

Sufficient Conditions

One Solution: Identify sufficient conditions guaranteeing chase
termination.

Many have been proposed:

Weak Acyclicity [FKMP05]
Stratification [DNR08] and C-Stratification [MSL09]
Safety and Inductive Restriction [MSL09]
Super-weak Acyclicity [Mar09]
Local Stratification [GST11, GST15]
Adornment Techniques [GS10, GST15]
Model-Faithful Acyclicity [GHK+13]
Acyclic Graph Rule Dependencies [BLMS11]

From now on we consider only TGDs

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 121 / 184

Sufficient Conditions

One Solution: Identify sufficient conditions guaranteeing chase
termination.

Many have been proposed:

Weak Acyclicity [FKMP05]
Stratification [DNR08] and C-Stratification [MSL09]
Safety and Inductive Restriction [MSL09]
Super-weak Acyclicity [Mar09]
Local Stratification [GST11, GST15]
Adornment Techniques [GS10, GST15]
Model-Faithful Acyclicity [GHK+13]
Acyclic Graph Rule Dependencies [BLMS11]

From now on we consider only TGDs

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 121 / 184

Chase Variants
Oblivious and Semi-oblivious

The set of dependencies is skolemized.
The resulting logic program is evaluated.
The oblivious and semi-oblivious chases adopt two different
skolemizations.

Example

r : N(X ,Y)→ ∃K ,Z E(X ,K ,Z)

Oblivious Chase. Skolemization:

N(X ,Y)→ E(X , f K
r (X ,Y), f Z

r (X ,Y))

Semi-oblivious Chase. Skolemization:

N(X ,Y)→ E(X , f K
r (X), f Z

r (X))

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 122 / 184

Chase Variants

Example (Complex terms represent nulls)

D : Σ :
E(a,b) E(X ,Y)→ ∃Z E(X ,Z)

Standard Semi-oblivious Oblivious

E(X ,Y)→ E(X , f (X)) E(X ,Y)→ E(X , f (X ,Y))

No chase step E(a,b) E(a,b)
(D |= Σ) E(a, f (a)) E(a, f (a,b))

E(a, f (a, f (a,b)))
STOP (fixpoint) E(a, f (a, f (a, f (a,b))))

...
NO Termination

(no fixpoint)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 123 / 184

Chase Variants

Example (Complex terms represent nulls)

D : Σ :
E(a,b) E(X ,Y)→ ∃Z E(X ,Z)

Standard Semi-oblivious Oblivious

E(X ,Y)→ E(X , f (X)) E(X ,Y)→ E(X , f (X ,Y))

No chase step

E(a,b) E(a,b)

(D |= Σ)

E(a, f (a)) E(a, f (a,b))
E(a, f (a, f (a,b)))

STOP (fixpoint) E(a, f (a, f (a, f (a,b))))
...

NO Termination
(no fixpoint)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 123 / 184

Chase Variants

Example (Complex terms represent nulls)

D : Σ :
E(a,b) E(X ,Y)→ ∃Z E(X ,Z)

Standard Semi-oblivious Oblivious

E(X ,Y)→ E(X , f (X))

E(X ,Y)→ E(X , f (X ,Y))

No chase step

E(a,b) E(a,b)

(D |= Σ)

E(a, f (a)) E(a, f (a,b))
E(a, f (a, f (a,b)))

STOP (fixpoint) E(a, f (a, f (a, f (a,b))))
...

NO Termination
(no fixpoint)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 123 / 184

Chase Variants

Example (Complex terms represent nulls)

D : Σ :
E(a,b) E(X ,Y)→ ∃Z E(X ,Z)

Standard Semi-oblivious Oblivious

E(X ,Y)→ E(X , f (X))

E(X ,Y)→ E(X , f (X ,Y))

No chase step E(a,b)

E(a,b)

(D |= Σ)

E(a, f (a)) E(a, f (a,b))
E(a, f (a, f (a,b)))

STOP (fixpoint) E(a, f (a, f (a, f (a,b))))
...

NO Termination
(no fixpoint)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 123 / 184

Chase Variants

Example (Complex terms represent nulls)

D : Σ :
E(a,b) E(X ,Y)→ ∃Z E(X ,Z)

Standard Semi-oblivious Oblivious

E(X ,Y)→ E(X , f (X))

E(X ,Y)→ E(X , f (X ,Y))

No chase step E(a,b)

E(a,b)

(D |= Σ) E(a, f (a))

E(a, f (a,b))
E(a, f (a, f (a,b)))

STOP (fixpoint) E(a, f (a, f (a, f (a,b))))
...

NO Termination
(no fixpoint)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 123 / 184

Chase Variants

Example (Complex terms represent nulls)

D : Σ :
E(a,b) E(X ,Y)→ ∃Z E(X ,Z)

Standard Semi-oblivious Oblivious

E(X ,Y)→ E(X , f (X))

E(X ,Y)→ E(X , f (X ,Y))

No chase step E(a,b)

E(a,b)

(D |= Σ) E(a, f (a))

E(a, f (a,b))
E(a, f (a, f (a,b)))

STOP (fixpoint)

E(a, f (a, f (a, f (a,b))))
...

NO Termination
(no fixpoint)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 123 / 184

Chase Variants

Example (Complex terms represent nulls)

D : Σ :
E(a,b) E(X ,Y)→ ∃Z E(X ,Z)

Standard Semi-oblivious Oblivious

E(X ,Y)→ E(X , f (X)) E(X ,Y)→ E(X , f (X ,Y))

No chase step E(a,b)

E(a,b)

(D |= Σ) E(a, f (a))

E(a, f (a,b))
E(a, f (a, f (a,b)))

STOP (fixpoint)

E(a, f (a, f (a, f (a,b))))
...

NO Termination
(no fixpoint)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 123 / 184

Chase Variants

Example (Complex terms represent nulls)

D : Σ :
E(a,b) E(X ,Y)→ ∃Z E(X ,Z)

Standard Semi-oblivious Oblivious

E(X ,Y)→ E(X , f (X)) E(X ,Y)→ E(X , f (X ,Y))

No chase step E(a,b) E(a,b)
(D |= Σ) E(a, f (a))

E(a, f (a,b))
E(a, f (a, f (a,b)))

STOP (fixpoint)

E(a, f (a, f (a, f (a,b))))
...

NO Termination
(no fixpoint)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 123 / 184

Chase Variants

Example (Complex terms represent nulls)

D : Σ :
E(a,b) E(X ,Y)→ ∃Z E(X ,Z)

Standard Semi-oblivious Oblivious

E(X ,Y)→ E(X , f (X)) E(X ,Y)→ E(X , f (X ,Y))

No chase step E(a,b) E(a,b)
(D |= Σ) E(a, f (a)) E(a, f (a,b))

E(a, f (a, f (a,b)))

STOP (fixpoint)

E(a, f (a, f (a, f (a,b))))
...

NO Termination
(no fixpoint)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 123 / 184

Chase Variants

Example (Complex terms represent nulls)

D : Σ :
E(a,b) E(X ,Y)→ ∃Z E(X ,Z)

Standard Semi-oblivious Oblivious

E(X ,Y)→ E(X , f (X)) E(X ,Y)→ E(X , f (X ,Y))

No chase step E(a,b) E(a,b)
(D |= Σ) E(a, f (a)) E(a, f (a,b))

E(a, f (a, f (a,b)))
STOP (fixpoint)

E(a, f (a, f (a, f (a,b))))
...

NO Termination
(no fixpoint)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 123 / 184

Chase Variants

Example (Complex terms represent nulls)

D : Σ :
E(a,b) E(X ,Y)→ ∃Z E(X ,Z)

Standard Semi-oblivious Oblivious

E(X ,Y)→ E(X , f (X)) E(X ,Y)→ E(X , f (X ,Y))

No chase step E(a,b) E(a,b)
(D |= Σ) E(a, f (a)) E(a, f (a,b))

E(a, f (a, f (a,b)))
STOP (fixpoint) E(a, f (a, f (a, f (a,b))))

...
NO Termination

(no fixpoint)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 123 / 184

Chase Variants

Example (Complex terms represent nulls)

D : Σ :
E(a,b) E(X ,Y)→ ∃Z E(X ,Z)

Standard Semi-oblivious Oblivious

E(X ,Y)→ E(X , f (X)) E(X ,Y)→ E(X , f (X ,Y))

No chase step E(a,b) E(a,b)
(D |= Σ) E(a, f (a)) E(a, f (a,b))

E(a, f (a, f (a,b)))
STOP (fixpoint) E(a, f (a, f (a, f (a,b))))

...
NO Termination

(no fixpoint)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 123 / 184

Chase Variants

Example (Complex terms represent nulls)

D : Σ :
E(a,b) E(X ,Y)→ ∃Z E(X ,Z)

Standard Semi-oblivious Oblivious

E(X ,Y)→ E(X , f (X)) E(X ,Y)→ E(X , f (X ,Y))

No chase step E(a,b) E(a,b)
(D |= Σ) E(a,⊥1) E(a,⊥2)

E(a,⊥3)
STOP (fixpoint) E(a,⊥4)

...
NO Termination

(no fixpoint)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 124 / 184

Chase Variants

Core Chase [DNR08]
Minimal universal models.

Core chase step:
1 Enforce all dependencies “in parallel”.
2 “Retract” the result (homomorphism h : M → M).

Theorem (Completeness of the Core Chase [DNR08])
If D is an instance and Σ is a set of TGDs. then there exists a universal
model for Σ and I iff the core chase of I with Σ terminates and yields
such a model.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 125 / 184

Chase Variants

CTc
∀: class of sets of TGDs Σ s.t., for every instance, all c-chase

sequences terminate.
CTc
∃: class of of sets of TGDs Σ s.t., for every instance, at least

one c-chase sequence terminates.

Theorem ([Mei10, One13] For TGDs only)

CTobl
∀ =CTobl

∃ (CTsobl
∀ =CTsobl

∃ (CTstd
∀ (CTstd

∃ (CTcore
∀ =CTcore

∃

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 126 / 184

Function Symbols vs. TGDs

Termination Criteria for programs with function symbols can be applied
to TGDs:

Step 1. Skolemize TGDs.

Example

r : p(X ,Y)→ ∃K ,Z q(X ,K ,Z)

sk(r) : p(X ,Y)→ q(X , f K
r (X), f Z

r (X))

Step 2. Apply termination criteria to skolemized TGDs.

Given a set Σ of TGDs, let sk(Σ) = {sk(r) | r ∈ Σ}.

Termination of the bottom-up evaluation of sk(Σ) (i.e., the
semi-oblivious chase)⇒ Termination of the chase of Σ [One13].

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 127 / 184

Function Symbols vs. TGDs

Example

r : p(X ,Y)→ ∃Zp(X ,Z)

Step 1. Skolemize r :

sk(r) : p(X ,Y)→ p(X , f Z
r (X))

We get a logic program with function symbols.

Step 2. Analyze sk(r) by applying a termination criterion.
E.g., sk(r) is argument-restricted.
Thus, the bottom-up evaluation of sk(r) always terminates.
That is, the semi-oblivious chase of r always terminates.
Thus, the standard chase of r always terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 128 / 184

Function Symbols vs. TGDs

Example

r : p(X ,Y)→ ∃Zp(X ,Z)

Step 1. Skolemize r :

sk(r) : p(X ,Y)→ p(X , f Z
r (X))

We get a logic program with function symbols.

Step 2. Analyze sk(r) by applying a termination criterion.
E.g., sk(r) is argument-restricted.
Thus, the bottom-up evaluation of sk(r) always terminates.
That is, the semi-oblivious chase of r always terminates.
Thus, the standard chase of r always terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 128 / 184

Function Symbols vs. TGDs

Example

r : p(X ,Y)→ ∃Zp(X ,Z)

Step 1. Skolemize r :

sk(r) : p(X ,Y)→ p(X , f Z
r (X))

We get a logic program with function symbols.

Step 2. Analyze sk(r) by applying a termination criterion.

E.g., sk(r) is argument-restricted.
Thus, the bottom-up evaluation of sk(r) always terminates.
That is, the semi-oblivious chase of r always terminates.
Thus, the standard chase of r always terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 128 / 184

Function Symbols vs. TGDs

Example

r : p(X ,Y)→ ∃Zp(X ,Z)

Step 1. Skolemize r :

sk(r) : p(X ,Y)→ p(X , f Z
r (X))

We get a logic program with function symbols.

Step 2. Analyze sk(r) by applying a termination criterion.
E.g., sk(r) is argument-restricted.

Thus, the bottom-up evaluation of sk(r) always terminates.
That is, the semi-oblivious chase of r always terminates.
Thus, the standard chase of r always terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 128 / 184

Function Symbols vs. TGDs

Example

r : p(X ,Y)→ ∃Zp(X ,Z)

Step 1. Skolemize r :

sk(r) : p(X ,Y)→ p(X , f Z
r (X))

We get a logic program with function symbols.

Step 2. Analyze sk(r) by applying a termination criterion.
E.g., sk(r) is argument-restricted.
Thus, the bottom-up evaluation of sk(r) always terminates.

That is, the semi-oblivious chase of r always terminates.
Thus, the standard chase of r always terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 128 / 184

Function Symbols vs. TGDs

Example

r : p(X ,Y)→ ∃Zp(X ,Z)

Step 1. Skolemize r :

sk(r) : p(X ,Y)→ p(X , f Z
r (X))

We get a logic program with function symbols.

Step 2. Analyze sk(r) by applying a termination criterion.
E.g., sk(r) is argument-restricted.
Thus, the bottom-up evaluation of sk(r) always terminates.
That is, the semi-oblivious chase of r always terminates.

Thus, the standard chase of r always terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 128 / 184

Function Symbols vs. TGDs

Example

r : p(X ,Y)→ ∃Zp(X ,Z)

Step 1. Skolemize r :

sk(r) : p(X ,Y)→ p(X , f Z
r (X))

We get a logic program with function symbols.

Step 2. Analyze sk(r) by applying a termination criterion.
E.g., sk(r) is argument-restricted.
Thus, the bottom-up evaluation of sk(r) always terminates.
That is, the semi-oblivious chase of r always terminates.
Thus, the standard chase of r always terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 128 / 184

Function Symbols vs. TGDs

Limitations: Recall that:

Theorem ([Mei10, One13])

CTsobl
∀ =CTsobl

∃ (CTstd
∀ (CTstd

∃

Function Symbols vs. TGDs

Example

⌃ sk(⌃)

r : p(X , Y)! 9Zq(X , Z) sk(r) : p(X , Y)! q(X , f Z
r (Z))

Limitations: Remember that:

Theorem (??)

CTsobl
8 =CTsobl

9 (CTstd
8 (CTstd

9

Example

CTsobl
8 =CTsobl

9 (CTstd
8 (CTstd

9

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 16 / 17

Function Symbols vs. TGDs

Example

⌃ sk(⌃)

r : p(X , Y)! 9Zq(X , Z) sk(r) : p(X , Y)! q(X , f Z
r (Z))

Limitations: Remember that:

Theorem (??)

CTsobl
8 =CTsobl

9 (CTstd
8 (CTstd

9

Example

CTsobl
8 =CTsobl

9 (CTstd
8 (CTstd

9

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 16 / 17

Function Symbols vs. TGDs

Example

⌃ sk(⌃)

r : p(X , Y)! 9Zq(X , Z) sk(r) : p(X , Y)! q(X , f Z
r (Z))

Limitations: Remember that:

Theorem (??)

CTsobl
8 =CTsobl

9 (CTstd
8 (CTstd

9

Example

CTsobl
8 =CTsobl

9 (CTstd
8 (CTstd

9

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 16 / 17

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 129 / 184

Function Symbols vs. TGDs

Limitations: Recall that:

Theorem ([Mei10, One13])

CTsobl
∀ =CTsobl

∃ (CTstd
∀ (CTstd

∃

Function Symbols vs. TGDs

Example

⌃ sk(⌃)

r : p(X , Y)! 9Zq(X , Z) sk(r) : p(X , Y)! q(X , f Z
r (Z))

Limitations: Remember that:

Theorem (??)

CTsobl
8 =CTsobl

9 (CTstd
8 (CTstd

9

Example

CTsobl
8 =CTsobl

9 (CTstd
8 (CTstd

9

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 16 / 17

Function Symbols vs. TGDs

Example

⌃ sk(⌃)

r : p(X , Y)! 9Zq(X , Z) sk(r) : p(X , Y)! q(X , f Z
r (Z))

Limitations: Remember that:

Theorem (??)

CTsobl
8 =CTsobl

9 (CTstd
8 (CTstd

9

Example

CTsobl
8 =CTsobl

9 (CTstd
8 (CTstd

9

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 16 / 17

Function Symbols vs. TGDs

Example

⌃ sk(⌃)

r : p(X , Y)! 9Zq(X , Z) sk(r) : p(X , Y)! q(X , f Z
r (Z))

Limitations: Remember that:

Theorem (??)

CTsobl
8 =CTsobl

9 (CTstd
8 (CTstd

9

Example

CTsobl
8 =CTsobl

9 (CTstd
8 (CTstd

9

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 16 / 17

Function Symbols vs. TGDs

Limitations: Remember that:

Theorem (??)

CTsobl
8 =CTsobl

9 (CTstd
8 (CTstd

9

Example

CTsobl
8 =CTsobl

9 (CTstd
8 (CTstd

9

⌃

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 17 / 18

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 129 / 184

Function Symbols vs. TGDs

What about applying criteria for TGDs to programs with function
symbols?

The latter are more general than skolemized TGDs.

Each function symbol occurs:

Skolemized TGDs Programs with function symbols
once arbitrary number of times

only in the head in the body and/or head
no nesting arbitrary nesting

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 130 / 184

Function Symbols vs. TGDs

What about applying criteria for TGDs to programs with function
symbols?

The latter are more general than skolemized TGDs.

Each function symbol occurs:

Skolemized TGDs Programs with function symbols
once arbitrary number of times

only in the head in the body and/or head
no nesting arbitrary nesting

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 130 / 184

Termination Criteria

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 131 / 184

Weak Acyclicity [FKMP05] [standard chase]

Dependency Graph
Nodes are predicate arguments.

Two kinds of edges:
1 normal edges represent the propagation of values between arguments;
2 special edges→∗ represent the generation of nulls.

Example

Σ =
N(X)→ ∃Y E(X ,Y)
E(X ,Y)→ N(Y)

N1
E2

E1

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 132 / 184

Weak Acyclicity [FKMP05] [standard chase]

Dependency Graph
Nodes are predicate arguments.

Two kinds of edges:
1 normal edges represent the propagation of values between arguments;
2 special edges→∗ represent the generation of nulls.

Example

Σ =
N(X)→ ∃Y E(X ,Y)
E(X ,Y)→ N(Y)

N1
E2

E1

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 132 / 184

Weak Acyclicity [FKMP05] [standard chase]

Dependency Graph
Nodes are predicate arguments.

Two kinds of edges:
1 normal edges represent the propagation of values between arguments;
2 special edges→∗ represent the generation of nulls.

Example

Σ =
N(X)→ ∃Y E(X ,Y)
E(X ,Y)→ N(Y)

N1
E2

E1

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 133 / 184

Weak Acyclicity [FKMP05] [standard chase]

Dependency Graph dep(Σ)

Nodes are predicate arguments.

Two kinds of edges:
1 normal edges represent the propagation of values between arguments;
2 special edges→∗ represent the generation of nulls.

Example

Σ =
N(X)→ ∃Y E(X ,Y)
E(X ,Y)→ N(Y)

N1
E2

E1

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 134 / 184

Weak Acyclicity [FKMP05] [standard chase]

Dependency Graph
Nodes are predicate arguments.

Two kinds of edges:
1 normal edges represent the propagation of values between arguments;
2 special edges→∗ represent the generation of nulls.

Example

Σ =
N(X)→ ∃Y E(X ,Y)
E(X ,Y)→ N(Y)

N1
E2

E1

*

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 135 / 184

Weak Acyclicity [FKMP05] [standard chase]

Definition
A set of dependencies is weakly acyclic if there is no cycle going
through a special edge in the dependency graph.

Theorem
If Σ is weakly acyclic, then for every instance I, every chase
sequence terminates (and has a polynomial length in the size of I).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 136 / 184

Weak Acyclicity [FKMP05] [standard chase]

Definition
A set of dependencies is weakly acyclic if there is no cycle going
through a special edge in the dependency graph.

Theorem
If Σ is weakly acyclic, then for every instance I, every chase
sequence terminates (and has a polynomial length in the size of I).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 136 / 184

Safety [MSL09] [standard chase]

Affected Positions aff (Σ) [CGK13]
Overestimation of positions that may contain null values.

Propagation Graph prop(Σ)

Restriction of the dependency graph containing only affected positions.

Example

Σ =
r1 : N(X)→ ∃Y E(X ,Y)
r2 : S(Y) ∧ E(X ,Y)→ N(Y)

N1
E2

E1

*

S1

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 137 / 184

Safety [MSL09] [standard chase]

Affected Positions aff (Σ) [CGK13]
Overestimation of positions that may contain null values.

Propagation Graph prop(Σ)

Restriction of the dependency graph containing only affected positions.

Example

Σ =
r1 : N(X)→ ∃Y E(X ,Y)
r2 : S(Y) ∧ E(X ,Y)→ N(Y)

N1
E2

E1

*

S1

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 137 / 184

Safety [MSL09] [standard chase]
Affected Positions aff (Σ)

Overestimation of positions that may contain null values.

Propagation Graph prop(Σ)

Restriction of the dependency graph containing only affected positions.

Example

Σ =
r1 : N(X)→ ∃Y E(X ,Y)
r2 : S(Y) ∧ E(X ,Y)→ N(Y)

N1
E2

E1

*

S1

aff (Σ) = {E2}
prop(Σ) = ({E2}, ∅)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 138 / 184

Safety [MSL09] [standard chase]

Affected Positions aff (Σ)

Overestimation of positions that may contain null values.

Propagation Graph prop(Σ)

Restriction of dependency graph containing only affected positions.

Safety
A set of dependencies is safe if the propagation graph does not contain cycles
with special edges.

Theorem
If Σ is safe, then for every instance I, every chase sequence terminates (and has a
polynomial length in the size of I).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 139 / 184

Safety [MSL09] [standard chase]

Affected Positions aff (Σ)

Overestimation of positions that may contain null values.

Propagation Graph prop(Σ)

Restriction of dependency graph containing only affected positions.

Safety
A set of dependencies is safe if the propagation graph does not contain cycles
with special edges.

Theorem
If Σ is safe, then for every instance I, every chase sequence terminates (and has a
polynomial length in the size of I).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 139 / 184

Stratification [DNR08] [standard chase]

Chase Graph G(Σ)

It represents how dependencies fire each other.

Nodes: the dependencies in Σ.

Edges: there is an edge from r1 to r2 (r1 ≺ r2) if r1 may “fire” r2.

Example

Σ =
r1 : N(X)→ ∃Y E(X ,Y)
r2 : S(Y) ∧ E(X ,Y)→ N(Y)

there exists a scenario where firing r2 causes r1 to fire (r2 ≺ r1).

r1 6≺ r2, r1 6≺ r1 and r2 6≺ r2.

The chase graph is acyclic and Σ is stratified.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 140 / 184

Stratification [DNR08] [standard chase]
Chase Graph G(Σ)

It represents how dependencies fire each other.

Nodes: the dependencies in Σ.

Edges: there is an edge from r1 to r2 (r1 ≺ r2) if r1 may “fire” r2.

Definition (Chase Graph G(Σ))
r1 ≺ r2 if ∃ instance K1 and homomorphisms h1 and h2 such that

1) K1→r1,h1 K2 (chase step - K1 6|= h1(r1)),

2) K2 6|= h2(r2),

3) K1 |= h2(r2).

Example

Σ =
r1 : N(X)→ ∃Y E(X ,Y)
r2 : S(Y) ∧ E(X ,Y)→ N(Y)

there exists a scenario where firing r2 causes r1 to fire (r2 ≺ r1).

r1 6≺ r2, r1 6≺ r1 and r2 6≺ r2.

The chase graph is acyclic and Σ is stratified.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 140 / 184

Stratification [DNR08] [standard chase]

Chase Graph G(Σ)

It represents how dependencies fire each other.

Nodes: the dependencies in Σ.

Edges: there is an edge from r1 to r2 (r1 ≺ r2) if r1 may “fire” r2.

Example

Σ =
r1 : N(X)→ ∃Y E(X ,Y)
r2 : S(Y) ∧ E(X ,Y)→ N(Y)

there exists a scenario where firing r2 causes r1 to fire (r2 ≺ r1).

r1 6≺ r2, r1 6≺ r1 and r2 6≺ r2.

The chase graph is acyclic and Σ is stratified.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 140 / 184

Stratification [DNR08] [standard chase]

Stratification
A set of dependencies is stratified if every cycle in the chase graph G(Σ) is weakly
acyclic.

Theorem
If Σ is stratified then, for every instance I, there exists at least one chase sequence
that terminates (and whose length is polynomial in the size of I).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 141 / 184

Stratification [DNR08] [standard chase]

Stratification
A set of dependencies is stratified if every cycle in the chase graph G(Σ) is weakly
acyclic.

Theorem
If Σ is stratified then, for every instance I, there exists at least one chase sequence
that terminates (and whose length is polynomial in the size of I).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 141 / 184

C-Stratification [MSL09] vs Stratification

A variation called c-stratification guarantees the termination of
every chase sequence.
Same approach of stratification, but the oblivious chase is used.

C-Stratification
r1 ≺c r2 if:
1) K1 →∗,r1,h1K2 (oblivious step),
2) K2 6|= h2(r2),
3) K1 |= h2(r2).

Stratification
r1 ≺ r2 if:
1) K1→r1,h1K2 (standard step),
2) K2 6|= h2(r2),
3) K1 |= h2(r2).

Theorem
If Σ is c-stratified then, for every instance I, all chase sequences terminate and their
length is polynomial in the size of I).

For any Σ, G(Σ) ⊆ Gc(Σ) ⇒ Str ⊇ CStr

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 142 / 184

C-Stratification [MSL09] vs Stratification

A variation called c-stratification guarantees the termination of
every chase sequence.
Same approach of stratification, but the oblivious chase is used.

C-Stratification
r1 ≺c r2 if:
1) K1 →∗,r1,h1K2 (oblivious step),
2) K2 6|= h2(r2),
3) K1 |= h2(r2).

Stratification
r1 ≺ r2 if:
1) K1→r1,h1K2 (standard step),
2) K2 6|= h2(r2),
3) K1 |= h2(r2).

Theorem
If Σ is c-stratified then, for every instance I, all chase sequences terminate and their
length is polynomial in the size of I).

For any Σ, G(Σ) ⊆ Gc(Σ) ⇒ Str ⊇ CStr

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 142 / 184

Inductive Restriction [MSL09] [oblivious chase]

It improves the firing relation by considering possible propagation of null
values.

It tests safety on the (nontrivial) strongly connected components of the
graph.

It generalizes both safety and c-stratification.

Theorem
If Σ is inductively restricted, then for every instance I, every chase sequence
terminates (and has a polynomial length in the size of I).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 143 / 184

Super-weak Acyclicity [Mar09] [semi-obliv. chase]

Builds a trigger graph whose edges define relations among dependencies. An
edge ri rj means that a null value introduced by a dependency ri is
propagated (directly or indirectly) into the body of rj .

Different nulls in positions for the same variable⇒ dependencies are not fired

Example
r1 : N(X)→ ∃Y ,Z E(X ,Y ,Z)
r2 : E(X ,Y ,Z)→ G(X ,Y ,Z)
r3 : G(X ,Y ,Y)→ N(Y)

Σ neither safe not stratified.

P(Σ) =

 r ′1 : N(X)→ E(X , f
r1
Y(X), f

r1
Z (X))

r ′2 : E(X ,Y ,Z)→ ∃Y ,Z G(X ,Y ,Z)
r ′3 : G(X ,Y ,Y)→ N(Y)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 144 / 184

Super-weak Acyclicity [Mar09] [semi-obliv. chase]

Builds a trigger graph whose edges define relations among dependencies. An
edge ri rj means that a null value introduced by a dependency ri is
propagated (directly or indirectly) into the body of rj .

Different nulls in positions for the same variable⇒ dependencies are not fired

Example
r1 : N(X)→ ∃Y ,Z E(X ,Y ,Z)
r2 : E(X ,Y ,Z)→ G(X ,Y ,Z)
r3 : G(X ,Y ,Y)→ N(Y)

Σ neither safe not stratified.

P(Σ) =

 r ′1 : N(X)→ E(X , f
r1
Y(X), f

r1
Z (X))

r ′2 : E(X ,Y ,Z)→ ∃Y ,Z G(X ,Y ,Z)
r ′3 : G(X ,Y ,Y)→ N(Y)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 144 / 184

Super-weak Acyclicity [Mar09] [semi-obliv. chase]

Builds a trigger graph whose edges define relations among dependencies. An
edge ri rj means that a null value introduced by a dependency ri is
propagated (directly or indirectly) into the body of rj .

Different nulls in positions for the same variable⇒ dependencies are not fired

Example
r1 : N(X)→ ∃Y ,Z E(X ,Y ,Z)
r2 : E(X ,Y ,Z)→ G(X ,Y ,Z)
r3 : G(X ,Y ,Y)→ N(Y)

Σ neither safe not stratified.

P(Σ) =

 r ′1 : N(X)→ E(X , f
r1
Y(X), f

r1
Z (X))

r ′2 : E(X ,Y ,Z)→ ∃Y ,Z G(X ,Y ,Z)
r ′3 : G(X ,Y ,Y)→ N(Y)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 144 / 184

Super-weak Acyclicity [Mar09]

Super-weak Acyclicity
A set of dependencies is super-weak acyclic if the trigger relation is
acyclic.

Theorem
If Σ is super-weak acyclic, then for every instance I, every chase
sequence terminates (and has a polynomial length in the size of I).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 145 / 184

Relative Expressivity

WA: Weak Acylicity
SC: Safety
CStr : C-stratification
IR: Inductive Restriction
SwA: Super-weak Acylicity

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 146 / 184

Limitations

Example

r1 : N(X)→ ∃ Y ∃Z E(X ,Y) ∧ S(Z ,Y)
r2 : E(X ,Y) ∧ S(X ,Y)→ N(Y)
r3 : E(X ,Y)→ E(Y ,X)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 147 / 184

Improvements of (C-)Stratification

Builds a firing graph Γ(Σ) = (Σ,E) representing how constraints fire each other.

(r1, r2) ∈ E if r1 < r2 (firing r1 can cause r2 to fire)

r1 < r2 if:

1) K1 →
r1,h1 K2,

2) K2 ∪ S 6|= h2(r2),

3) K1 ∪ S |= h2(r2) and

4) Null(S) ∩ (Null(K2)− Null(K1)) = ∅.

r1 ≺ r2 if:

1) K1 →r1,h1 K2,

2) K2 6|= h2(r2),

3) K1 |= h2(r2).

As r1 could cause the firing of r2 not immediately, S is a set of atoms which could have been
inferred after the firing of r1.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 148 / 184

Improvements of (C-)Stratification

Example

Σ =
r1 : R(x)→ ∃y T (x , y)
r2 : R(x)→ T (x , x)
r3 : T (x , y) ∧ T (x , x)→ R(y)

K1 = {R(a)} and K2 = {R(a),T (a,⊥1)}
S = {T (a, a)}
r3 : T (a,⊥1) ∧ T (a, a)→ R(⊥1)

r3 is fired by r1, then we have r1 < r3

Local Stratification
WA-Str (resp. SC-Str , SwA-Str) tests WA (resp. SC, SwA) over components of Γ(Σ)

Local Stratification (LC) combines SwA with Γ(Σ): in analyzing how nulls may be
propagated from a rule ri to a rule rj , also checks whether ri < rj transitively.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 149 / 184

Improvements of (C-)Stratification

Example

Σ =
r1 : R(x)→ ∃y T (x , y)
r2 : R(x)→ T (x , x)
r3 : T (x , y) ∧ T (x , x)→ R(y)

K1 = {R(a)} and K2 = {R(a),T (a,⊥1)}
S = {T (a, a)}
r3 : T (a,⊥1) ∧ T (a, a)→ R(⊥1)

r3 is fired by r1, then we have r1 < r3

Local Stratification
WA-Str (resp. SC-Str , SwA-Str) tests WA (resp. SC, SwA) over components of Γ(Σ)

Local Stratification (LC) combines SwA with Γ(Σ): in analyzing how nulls may be
propagated from a rule ri to a rule rj , also checks whether ri < rj transitively.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 149 / 184

Criteria Relationships

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 150 / 184

Rewriting Techniques

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 151 / 184

Constraints Rewriting Technique [GST15]

Idea
Rewrite Σ into an ‘equivalent’ adorned set Σα and verify the
structural properties for chase termination on Σα (similarly to LPs)
Rewrite Σ into a set of dependencies useful to analyze the
structure of terms during the execution.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 152 / 184

Rewriting Algorithm [GST15]

Example
Σ :

r1 : N(X)→ ∃Y E(X ,Y)
r2 : S(X) ∧ E(X ,Y)→ N(Y)

Adn(Σ):

s1 : N(X) → Nb(X)
s2 : S(X) → Sb(X)
s3 : E(X ,Y) → Ebb(X ,Y)

r ′1 : Nb(X) → ∃Y Ebf1 (X ,Y) f1 = f Y
r1

(b)
r ′2 : Sb(X) ∧ Ebb(X ,Y) → Nb(Y)

r ′′2 : Sb(X) ∧ Ebf1 (X ,Y) → N f1 (Y)
r ′′1 : N f1 (X) → ∃Y E f1f2 (X ,Y) f2 = f Y

r1
(f1)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 153 / 184

Model-Faithful Acyclicity (MFA) [GHK+13]

Example
Σ :

r : A(X)→ ∃Y ,Z R(X ,Y) ∧ B(Z)

MFA(Σ) :

A(X)→ ∃Y ,Z R(X ,Y) ∧ B(Z) ∧
F Y

r (Y) ∧ F Z
r (Z) ∧ S(X ,Y) ∧ S(X ,Z)

S(X1,X2) → D(X1,X2)
D(X1,X2) ∧ S(X2,X3) → D(X1,X3)

F Y
r (X1) ∧ D(X1,X2) ∧ F Y

r (X2) → C
F Z

r (X1) ∧ D(X1,X2) ∧ F Z
r (X2) → C

If I ∪MFA(Σ) |= C then a cyclic term is derived during the
semi-oblivious chase execution of I and Σ.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 154 / 184

Model-Faithful Acyclicity (MFA) [GHK+13]

Example
Σ :

r : A(X)→ ∃Y ,Z R(X ,Y) ∧ B(Z)

MFA(Σ) :

A(X)→ ∃Y ,Z R(X ,Y) ∧ B(Z)

∧
F Y

r (Y) ∧ F Z
r (Z) ∧ S(X ,Y) ∧ S(X ,Z)

S(X1,X2) → D(X1,X2)
D(X1,X2) ∧ S(X2,X3) → D(X1,X3)

F Y
r (X1) ∧ D(X1,X2) ∧ F Y

r (X2) → C
F Z

r (X1) ∧ D(X1,X2) ∧ F Z
r (X2) → C

If I ∪MFA(Σ) |= C then a cyclic term is derived during the
semi-oblivious chase execution of I and Σ.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 154 / 184

Model-Faithful Acyclicity (MFA) [GHK+13]

Example
Σ :

r : A(X)→ ∃Y ,Z R(X ,Y) ∧ B(Z)

MFA(Σ) :

A(X)→ ∃Y ,Z R(X ,Y) ∧ B(Z) ∧
F Y

r (Y) ∧ F Z
r (Z) ∧ S(X ,Y) ∧ S(X ,Z)

S(X1,X2) → D(X1,X2)
D(X1,X2) ∧ S(X2,X3) → D(X1,X3)

F Y
r (X1) ∧ D(X1,X2) ∧ F Y

r (X2) → C
F Z

r (X1) ∧ D(X1,X2) ∧ F Z
r (X2) → C

If I ∪MFA(Σ) |= C then a cyclic term is derived during the
semi-oblivious chase execution of I and Σ.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 154 / 184

Model-Faithful Acyclicity (MFA) [GHK+13]

Example
Σ :

r : A(X)→ ∃Y ,Z R(X ,Y) ∧ B(Z)

MFA(Σ) :

A(X)→ ∃Y ,Z R(X ,Y) ∧ B(Z) ∧
F Y

r (Y) ∧ F Z
r (Z) ∧ S(X ,Y) ∧ S(X ,Z)

S(X1,X2) → D(X1,X2)
D(X1,X2) ∧ S(X2,X3) → D(X1,X3)

F Y
r (X1) ∧ D(X1,X2) ∧ F Y

r (X2) → C
F Z

r (X1) ∧ D(X1,X2) ∧ F Z
r (X2) → C

If I ∪MFA(Σ) |= C then a cyclic term is derived during the
semi-oblivious chase execution of I and Σ.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 154 / 184

Model-Faithful Acyclicity (MFA) [GHK+13]

Example
Σ :

r : A(X)→ ∃Y ,Z R(X ,Y) ∧ B(Z)

MFA(Σ) :

A(X)→ ∃Y ,Z R(X ,Y) ∧ B(Z) ∧
F Y

r (Y) ∧ F Z
r (Z) ∧ S(X ,Y) ∧ S(X ,Z)

S(X1,X2) → D(X1,X2)
D(X1,X2) ∧ S(X2,X3) → D(X1,X3)

F Y
r (X1) ∧ D(X1,X2) ∧ F Y

r (X2) → C
F Z

r (X1) ∧ D(X1,X2) ∧ F Z
r (X2) → C

If I ∪MFA(Σ) |= C then a cyclic term is derived during the
semi-oblivious chase execution of I and Σ.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 154 / 184

Model-Faithful Acyclicity (MFA) [GHK+13]

Example
Σ :

r : A(X)→ ∃Y ,Z R(X ,Y) ∧ B(Z)

MFA(Σ) :

A(X)→ ∃Y ,Z R(X ,Y) ∧ B(Z) ∧
F Y

r (Y) ∧ F Z
r (Z) ∧ S(X ,Y) ∧ S(X ,Z)

S(X1,X2) → D(X1,X2)
D(X1,X2) ∧ S(X2,X3) → D(X1,X3)

F Y
r (X1) ∧ D(X1,X2) ∧ F Y

r (X2) → C
F Z

r (X1) ∧ D(X1,X2) ∧ F Z
r (X2) → C

If I ∪MFA(Σ) |= C then a cyclic term is derived during the
semi-oblivious chase execution of I and Σ.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 154 / 184

Model-Faithful Acyclicity (MFA) [GHK+13]
Definition
Σ is MFA w.r.t. an instance I if I ∪MFA(Σ) 6|= C.

Definition
The critical instance IΣ for Σ is the instance containing all facts that can be built using:

all predicates in Σ,

all constants in the body of a dependency in Σ, and

one special fresh constant ∗.

Theorem ([Mar09])
The semi-oblivious chase of Σ and I terminates for every I iff the semi-oblivious chase
of Σ and IΣ terminates.

Theorem
If Σ is MFA w.r.t. IΣ, then for every instance I, every (semi-oblivious) chase
sequence terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 155 / 184

Related Approaches

So far we have discussed sufficient conditions ensuring chase
termination.
Other lines of research:

Identify restricted classes of dependencies for which the
termination problem is decidable [CGP15].
Identify restricted classes of dependencies guaranteeing
decidability of query answering (even if the chase does not
terminate).

I Guarded and Weakly Guarded Datalog± [CGK13]
I Sticky Datalog± [CGP10]
I Forward and Backward chaining [BLMS11]

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 156 / 184

Adding EGDs

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 157 / 184

EGDs – Syntax

An Equality-Generating Dependency is of the form:

∀X ϕ(X)→ X1 = X2

where ϕ(X) is a conjunction of atoms and X1,X2 ∈ X .

Example
∀M1,M2,P directs(M1,P) ∧ directs(M2,P)→ M1 = M2

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 158 / 184

EGDs and Chase Termination

1 In some cases the presence of EGDs allows us to have a
terminating c-chase sequence when the set consisting only of the
TGDs does not have one;

2 In some cases in the presence of EGDs there is no terminating
c-chase sequence, but the set consisting only of the TGDs does
have one.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 159 / 184

Chase and EGDs

Adding EGDs leads to termination

Example (No EGDs)

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
E(X ,Y)→ N(Y)

chase(D,Σ) = {N(a), E(a,⊥1), N(⊥1), E(⊥1,⊥2), . . .

There is no terminating chase sequence.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 160 / 184

Chase and EGDs

Adding EGDs leads to termination

Example (No EGDs)

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
E(X ,Y)→ N(Y)

chase(D,Σ) = {N(a), E(a,⊥1), N(⊥1), E(⊥1,⊥2), . . .

There is no terminating chase sequence.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 160 / 184

Chase and EGDs
Adding EGDs leads to termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
E(X ,Y)→ N(Y)
E(X ,Y)→ X = Y

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 161 / 184

Chase and EGDs
Adding EGDs leads to termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
E(X ,Y)→ N(Y)
E(X ,Y)→ X = Y

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 161 / 184

Chase and EGDs
Adding EGDs leads to termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
E(X ,Y)→ N(Y)
E(X ,Y)→ X = Y

chase(D,Σ) = {N(a), E(a,⊥1),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 162 / 184

Chase and EGDs
Adding EGDs leads to termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
E(X ,Y)→ N(Y)
E(X ,Y)→ X = Y

chase(D,Σ) = {N(a),

E(a,⊥1),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 162 / 184

Chase and EGDs
Adding EGDs leads to termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
E(X ,Y)→ N(Y)
E(X ,Y)→ X = Y

chase(D,Σ) = {N(a),

E(a,⊥1),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 162 / 184

Chase and EGDs
Adding EGDs leads to termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
E(X ,Y)→ N(Y)
E(X ,Y)→ X = Y

chase(D,Σ) = {N(a), E(a,⊥1),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 162 / 184

Chase and EGDs
Adding EGDs leads to termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
E(X ,Y)→ N(Y)
E(X ,Y)→ X = Y

chase(D,Σ) = {N(a), E(a,⊥1),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 162 / 184

Chase and EGDs
Adding EGDs leads to termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
E(X ,Y)→ N(Y)
E(X ,Y)→ X = Y

chase(D,Σ) = {N(a), E(a,⊥1),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 162 / 184

Chase and EGDs
Adding EGDs leads to termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
E(X ,Y)→ N(Y)
E(X ,Y)→ X = Y

chase(D,Σ) = {N(a), E(a,a)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 163 / 184

Chase and EGDs
Adding EGDs leads to termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y E(X ,Y)
E(X ,Y)→ N(Y)
E(X ,Y)→ X = Y

chase(D,Σ) = {N(a), E(a,a)}

No further dependency is applicable: STOP.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 164 / 184

Chase and EGDs

Adding EGDs→ No termination

Example (No EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)

chase(D,Σ) = {N(a), E(a,⊥1,⊥2) }

No further dependency is applicable: STOP.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 165 / 184

Chase and EGDs

Adding EGDs→ No termination

Example (No EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)

chase(D,Σ) = {N(a),

E(a,⊥1,⊥2) }

No further dependency is applicable: STOP.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 165 / 184

Chase and EGDs

Adding EGDs→ No termination

Example (No EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)

chase(D,Σ) = {N(a),

E(a,⊥1,⊥2) }

No further dependency is applicable: STOP.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 165 / 184

Chase and EGDs

Adding EGDs→ No termination

Example (No EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)

chase(D,Σ) = {N(a), E(a,⊥1,⊥2)

}

No further dependency is applicable: STOP.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 165 / 184

Chase and EGDs

Adding EGDs→ No termination

Example (No EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)

chase(D,Σ) = {N(a), E(a,⊥1,⊥2) }

No further dependency is applicable: STOP.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 165 / 184

Chase and EGDs
Adding EGDs→ No termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)
E(X ,Y , Z)→ Y = Z

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 166 / 184

Chase and EGDs
Adding EGDs→ No termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)
E(X ,Y , Z)→ Y = Z

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 166 / 184

Chase and EGDs
Adding EGDs→ No termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)
E(X ,Y ,Z)→ Y = Z

chase(D,Σ) = {N(a), E(a,⊥1,⊥2),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 167 / 184

Chase and EGDs
Adding EGDs→ No termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)
E(X ,Y ,Z)→ Y = Z

chase(D,Σ) = {N(a),

E(a,⊥1,⊥2),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 167 / 184

Chase and EGDs
Adding EGDs→ No termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)
E(X ,Y ,Z)→ Y = Z

chase(D,Σ) = {N(a),

E(a,⊥1,⊥2),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 167 / 184

Chase and EGDs
Adding EGDs→ No termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)
E(X ,Y ,Z)→ Y = Z

chase(D,Σ) = {N(a), E(a,⊥1,⊥2),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 167 / 184

Chase and EGDs
Adding EGDs→ No termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)
E(X ,Y ,Z)→ Y = Z

chase(D,Σ) = {N(a), E(a,⊥1,⊥2),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 167 / 184

Chase and EGDs
Adding EGDs→ No termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)
E(X ,Y ,Z)→ Y = Z

chase(D,Σ) = {N(a), E(a,⊥1,⊥2),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 167 / 184

Chase and EGDs
Adding EGDs→ No termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)
E(X ,Y ,Z)→ Y = Z

chase(D,Σ) = {N(a), E(a,⊥1,⊥1),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 168 / 184

Chase and EGDs
Adding EGDs→ No termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)
E(X ,Y ,Z)→ Y = Z

chase(D,Σ) = {N(a), E(a,⊥1,⊥1),

N(⊥1), E(⊥1,⊥2,⊥3),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 169 / 184

Chase and EGDs
Adding EGDs→ No termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)
E(X ,Y ,Z)→ Y = Z

chase(D,Σ) = {N(a), E(a,⊥1,⊥1),

N(⊥1), E(⊥1,⊥2,⊥3),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 169 / 184

Chase and EGDs
Adding EGDs→ No termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)
E(X ,Y ,Z)→ Y = Z

chase(D,Σ) = {N(a), E(a,⊥1,⊥1), N(⊥1),

E(⊥1,⊥2,⊥3),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 169 / 184

Chase and EGDs
Adding EGDs→ No termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)
E(X ,Y ,Z)→ Y = Z

chase(D,Σ) = {N(a), E(a,⊥1,⊥1), N(⊥1),

E(⊥1,⊥2,⊥3),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 169 / 184

Chase and EGDs
Adding EGDs→ No termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)
E(X ,Y ,Z)→ Y = Z

chase(D,Σ) = {N(a), E(a,⊥1,⊥1), N(⊥1),

E(⊥1,⊥2,⊥3),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 169 / 184

Chase and EGDs
Adding EGDs→ No termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)
E(X ,Y ,Z)→ Y = Z

chase(D,Σ) = {N(a), E(a,⊥1,⊥1), N(⊥1), E(⊥1,⊥2,⊥3),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 169 / 184

Chase and EGDs
Adding EGDs→ No termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)
E(X ,Y ,Z)→ Y = Z

chase(D,Σ) = {N(a), E(a,⊥1,⊥1), N(⊥1), E(⊥1,⊥2,⊥3),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 169 / 184

Chase and EGDs
Adding EGDs→ No termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)
E(X ,Y ,Z)→ Y = Z

chase(D,Σ) = {N(a), E(a,⊥1,⊥1), N(⊥1), E(⊥1,⊥2,⊥3),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 169 / 184

Chase and EGDs
Adding EGDs→ No termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)
E(X ,Y ,Z)→ Y = Z

chase(D,Σ) = {N(a), E(a,⊥1,⊥1), N(⊥1), E(⊥1,⊥2, ⊥2),

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 170 / 184

Chase and EGDs
Adding EGDs→ No termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X)→ ∃Y ∃Z E(X ,Y ,Z)
E(X ,Y ,Y)→ N(Y)
E(X ,Y ,Z)→ Y = Z

chase(D,Σ) = {N(a), E(a,⊥1,⊥1), N(⊥1), E(⊥1,⊥2,⊥2), . . .

No termination

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 171 / 184

Relationship between CTc
∀ and CTc

∃

For TGDs only:

CTobl
∀ = CTobl

∃ ⊂ CTsobl
∀ = CTsobl

∃ ⊂ CTstd
∀ ⊂ CTstd

∃ ⊂ CTcore
∀ = CTcore

∃

Known techniques can (and some actually do!) consider the class CTc
∀

for a simpler chase (e.g., oblivious).

Then, membership in CTstd
∀ , CTstd

∃ , CTcore
∀ , and CTcore

∃ is implied.

Question: Does this still hold for TGDs+EGDs?

CTobl
∀ ⊂ CTobl

∃ ∦ CTsobl
∀ ⊂ CTsobl

∃ ∦ CTstd
∀ ⊂CTstd

∃ ⊂CTcore
∀ =CTcore

∃

CTobl
∀ ⊂CTsobl

∀ ⊂CTstd
∀ ⊂CTcore

∀

CTobl
∃ ⊂CTsobl

∃ ⊂CTstd
∃ ⊂CTcore

∃

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 172 / 184

Relationship between CTc
∀ and CTc

∃

For TGDs only:

CTobl
∀ = CTobl

∃ ⊂ CTsobl
∀ = CTsobl

∃ ⊂ CTstd
∀ ⊂ CTstd

∃ ⊂ CTcore
∀ = CTcore

∃

Known techniques can (and some actually do!) consider the class CTc
∀

for a simpler chase (e.g., oblivious).

Then, membership in CTstd
∀ , CTstd

∃ , CTcore
∀ , and CTcore

∃ is implied.

Question: Does this still hold for TGDs+EGDs?

CTobl
∀ ⊂ CTobl

∃ ∦ CTsobl
∀ ⊂ CTsobl

∃ ∦ CTstd
∀ ⊂CTstd

∃ ⊂CTcore
∀ =CTcore

∃

CTobl
∀ ⊂CTsobl

∀ ⊂CTstd
∀ ⊂CTcore

∀

CTobl
∃ ⊂CTsobl

∃ ⊂CTstd
∃ ⊂CTcore

∃

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 172 / 184

Relationship between CTc
∀ and CTc

∃

For TGDs only:

CTobl
∀ = CTobl

∃ ⊂ CTsobl
∀ = CTsobl

∃ ⊂ CTstd
∀ ⊂ CTstd

∃ ⊂ CTcore
∀ = CTcore

∃

Known techniques can (and some actually do!) consider the class CTc
∀

for a simpler chase (e.g., oblivious).

Then, membership in CTstd
∀ , CTstd

∃ , CTcore
∀ , and CTcore

∃ is implied.

Question: Does this still hold for TGDs+EGDs?

CTobl
∀ ⊂ CTobl

∃ ∦ CTsobl
∀ ⊂ CTsobl

∃ ∦ CTstd
∀ ⊂CTstd

∃ ⊂CTcore
∀ =CTcore

∃

CTobl
∀ ⊂CTsobl

∀ ⊂CTstd
∀ ⊂CTcore

∀

CTobl
∃ ⊂CTsobl

∃ ⊂CTstd
∃ ⊂CTcore

∃

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 172 / 184

Relationship between CTc
∀ and CTc

∃

For TGDs only:

CTobl
∀ = CTobl

∃ ⊂ CTsobl
∀ = CTsobl

∃ ⊂ CTstd
∀ ⊂ CTstd

∃ ⊂ CTcore
∀ = CTcore

∃

Known techniques can (and some actually do!) consider the class CTc
∀

for a simpler chase (e.g., oblivious).

Then, membership in CTstd
∀ , CTstd

∃ , CTcore
∀ , and CTcore

∃ is implied.

Question: Does this still hold for TGDs+EGDs?

CTobl
∀ ⊂ CTobl

∃ ∦ CTsobl
∀ ⊂ CTsobl

∃ ∦ CTstd
∀ ⊂CTstd

∃ ⊂CTcore
∀ =CTcore

∃

CTobl
∀ ⊂CTsobl

∀ ⊂CTstd
∀ ⊂CTcore

∀

CTobl
∃ ⊂CTsobl

∃ ⊂CTstd
∃ ⊂CTcore

∃

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 172 / 184

Relationship between CTc
∀ and CTc

∃

For TGDs only:

CTobl
∀ = CTobl

∃ ⊂ CTsobl
∀ = CTsobl

∃ ⊂ CTstd
∀ ⊂ CTstd

∃ ⊂ CTcore
∀ = CTcore

∃

Known techniques can (and some actually do!) consider the class CTc
∀

for a simpler chase (e.g., oblivious).

Then, membership in CTstd
∀ , CTstd

∃ , CTcore
∀ , and CTcore

∃ is implied.

Question: Does this still hold for TGDs+EGDs?

CTobl
∀ ⊂ CTobl

∃ ∦ CTsobl
∀ ⊂ CTsobl

∃ ∦ CTstd
∀ ⊂CTstd

∃ ⊂CTcore
∀ =CTcore

∃

CTobl
∀ ⊂CTsobl

∀ ⊂CTstd
∀ ⊂CTcore

∀

CTobl
∃ ⊂CTsobl

∃ ⊂CTstd
∃ ⊂CTcore

∃

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 172 / 184

Relationship between CTc
∀ and CTc

∃

For TGDs only:

CTobl
∀ = CTobl

∃ ⊂ CTsobl
∀ = CTsobl

∃ ⊂ CTstd
∀ ⊂ CTstd

∃ ⊂ CTcore
∀ = CTcore

∃

Known techniques can (and some actually do!) consider the class CTc
∀

for a simpler chase (e.g., oblivious).

Then, membership in CTstd
∀ , CTstd

∃ , CTcore
∀ , and CTcore

∃ is implied.

Question: Does this still hold for TGDs+EGDs?

CTobl
∀ ⊂ CTobl

∃ ∦ CTsobl
∀ ⊂ CTsobl

∃ ∦ CTstd
∀ ⊂CTstd

∃ ⊂CTcore
∀ =CTcore

∃

CTobl
∀ ⊂CTsobl

∀ ⊂CTstd
∀ ⊂CTcore

∀

CTobl
∃ ⊂CTsobl

∃ ⊂CTstd
∃ ⊂CTcore

∃

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 172 / 184

Termination Criteria and EGDs

Many techniques are valid for TGDs only;

But they can be applied by simulating EGDs with TGDs:

I Natural Simulation [Gottlob et al., PODS06];
I Substitution-free simulation [Marnette, PODS09].

However, the behaviour of EGDs cannot be fully simulated via
TGDs...

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 173 / 184

Termination Criteria and EGDs

Many techniques are valid for TGDs only;

But they can be applied by simulating EGDs with TGDs:

I Natural Simulation [Gottlob et al., PODS06];
I Substitution-free simulation [Marnette, PODS09].

However, the behaviour of EGDs cannot be fully simulated via
TGDs...

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 173 / 184

Termination Criteria and EGDs

Many techniques are valid for TGDs only;

But they can be applied by simulating EGDs with TGDs:

I Natural Simulation [Gottlob et al., PODS06];
I Substitution-free simulation [Marnette, PODS09].

However, the behaviour of EGDs cannot be fully simulated via
TGDs...

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 173 / 184

EGDs Simulation

Example
Σ :

r1 : A(x) ∧ B(x) → C(x)
r2 : C(x) → ∃y A(x) ∧ B(y)
r3 : C(x) → ∃y A(y) ∧ B(x)
r4 : A(x) ∧ A(y) → x = y
r5 : B(x) ∧ B(y) → x = y

Every chase sequence is terminating, for any variation of the chase.

However, both the natural and the substitution-free simulations of Σ
have no terminating chase sequence.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 174 / 184

EGDs Simulation

Example
Σ :

r1 : A(x) ∧ B(x) → C(x)
r2 : C(x) → ∃y A(x) ∧ B(y)
r3 : C(x) → ∃y A(y) ∧ B(x)
r4 : A(x) ∧ A(y) → x = y
r5 : B(x) ∧ B(y) → x = y

Every chase sequence is terminating, for any variation of the chase.

However, both the natural and the substitution-free simulations of Σ
have no terminating chase sequence.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 174 / 184

EGDs Simulation
Substitution-free simulation [Mar09]

Example

A(X) ∧ B(X)→ C(X)
C(X)→ ∃Y A(X) ∧ B(Y)
C(X)→ ∃Y A(Y) ∧ B(X)
A(X) ∧ A(Y)→ X = Y
B(X) ∧ B(Y)→ X = Y

Eq(X ,Y) → Eq(Y ,X)
Eq(X ,Y) ∧ Eq(Y ,Z) → Eq(X ,Z)
A(X) → Eq(X ,X)
B(X) → Eq(X ,X)
C(X) → Eq(X ,X)

Every chase sequence is terminating.

No terminating chase sequence for the substitution-free simulations.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 175 / 184

EGDs Simulation
Substitution-free simulation [Mar09]

Example

A(X) ∧ B(X)→ C(X)
C(X)→ ∃Y A(X) ∧ B(Y)
C(X)→ ∃Y A(Y) ∧ B(X)
A(X) ∧ A(Y)→ X = Y
B(X) ∧ B(Y)→ X = Y

Eq(X ,Y) → Eq(Y ,X)
Eq(X ,Y) ∧ Eq(Y ,Z) → Eq(X ,Z)
A(X) → Eq(X ,X)
B(X) → Eq(X ,X)
C(X) → Eq(X ,X)

Every chase sequence is terminating.

No terminating chase sequence for the substitution-free simulations.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 175 / 184

EGDs Simulation
Substitution-free simulation [Mar09]

Example

(((
((((

((((A(X) ∧ B(X)→ C(X) A(X) ∧ B(X2) ∧ Eq(X ,X2)→ C(X)
C(X)→ ∃Y A(X) ∧ B(Y)
C(X)→ ∃Y A(Y) ∧ B(X)
A(X) ∧ A(Y)→ X = Y
B(X) ∧ B(Y)→ X = Y

Eq(X ,Y) → Eq(Y ,X)
Eq(X ,Y) ∧ Eq(Y ,Z) → Eq(X ,Z)
A(X) → Eq(X ,X)
B(X) → Eq(X ,X)
C(X) → Eq(X ,X)

Every chase sequence is terminating.

No terminating chase sequence for the substitution-free simulations.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 176 / 184

EGDs Simulation
Substitution-free simulation [Mar09]

Example

(((
((((

((((A(X) ∧ B(X)→ C(X) A(X) ∧ B(X2) ∧ Eq(X ,X2)→ C(X)
C(X)→ ∃Y A(X) ∧ B(Y)
C(X)→ ∃Y A(Y) ∧ B(X)
A(X) ∧ A(Y)→����X = Y Eq(X ,Y)
B(X) ∧ B(Y)→����X = Y Eq(X ,Y)

Eq(X ,Y) → Eq(Y ,X)
Eq(X ,Y) ∧ Eq(Y ,Z) → Eq(X ,Z)
A(X) → Eq(X ,X)
B(X) → Eq(X ,X)
C(X) → Eq(X ,X)

Every chase sequence is terminating.

No terminating chase sequence for the substitution-free simulations.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 177 / 184

EGDs Simulation
Substitution-free simulation [Mar09]

Example

((((
(((

((((A(X) ∧ B(X)→ C(X) A(X) ∧ B(X2) ∧ Eq(X ,X2)→ C(X)
C(X)→ ∃Y A(X) ∧ B(Y)
C(X)→ ∃Y A(Y) ∧ B(X)
A(X) ∧ A(Y)→����X = Y Eq(X ,Y)
B(X) ∧ B(Y)→����X = Y Eq(X ,Y)

Eq(X ,Y) → Eq(Y ,X)
Eq(X ,Y) ∧ Eq(Y ,Z) → Eq(X ,Z)
A(X) → Eq(X ,X)
B(X) → Eq(X ,X)
C(X) → Eq(X ,X)

Every chase sequence is terminating.
No terminating chase sequence for the substitution-free simulations.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 178 / 184

Function Symbols vs. EGDs
Step 1. Replace EGDs with TGDs via Substitution-free simulation
[Mar09].
Step 2. Proceed as with TGDs.

Recall that:

Example

Terminating

p(X) ∧ q(X)→ r(X)
r(X)→ ∃Y p(X) ∧ q(Y)
r(X)→ ∃Y p(Y) ∧ q(X)
p(X) ∧ p(Y)→ X = Y
q(X) ∧ q(Y)→ X = Y

Non− Terminating

p(X) ∧ q(X2) ∧ eq(X ,X2)→ r(X)
r(X)→ ∃Y p(X) ∧ q(Y)
r(X)→ ∃Y p(Y) ∧ q(X)
p(X) ∧ p(Y)→ eq(X ,Y)
q(X) ∧ q(Y)→ eq(X ,Y)

eq(X ,Y)→ eq(Y ,X)
eq(X ,Y) ∧ eq(Y ,Z)→ eq(X ,Z)
p(X)→ eq(X ,X)
q(X)→ eq(X ,X)
r(X)→ eq(X ,X)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 179 / 184

Function Symbols vs. EGDs
Step 1. Replace EGDs with TGDs via Substitution-free simulation
[Mar09].
Step 2. Proceed as with TGDs.

Recall that:

Example
Terminating

p(X) ∧ q(X)→ r(X)
r(X)→ ∃Y p(X) ∧ q(Y)
r(X)→ ∃Y p(Y) ∧ q(X)
p(X) ∧ p(Y)→ X = Y
q(X) ∧ q(Y)→ X = Y

Non− Terminating

p(X) ∧ q(X2) ∧ eq(X ,X2)→ r(X)
r(X)→ ∃Y p(X) ∧ q(Y)
r(X)→ ∃Y p(Y) ∧ q(X)
p(X) ∧ p(Y)→ eq(X ,Y)
q(X) ∧ q(Y)→ eq(X ,Y)

eq(X ,Y)→ eq(Y ,X)
eq(X ,Y) ∧ eq(Y ,Z)→ eq(X ,Z)
p(X)→ eq(X ,X)
q(X)→ eq(X ,X)
r(X)→ eq(X ,X)

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 179 / 184

Dealing with EGDs

Example
D = {N(a)}, Σ :

N(x) → ∃y E(x , y)
E(x , y) → N(y)
E(x , y) → x = y

N(a)→ E(a,)

→ a =⊥1 → all constraints satisfied!

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 180 / 184

Dealing with EGDs

Example
D = {N(a)}, Σ :

N(x) → ∃y E(x , y)
E(x , y) → N(y)
E(x , y) → x = y

N(a)

→ E(a,)

→ a =⊥1 → all constraints satisfied!

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 180 / 184

Dealing with EGDs

Example
D = {N(a)}, Σ :

N(x) → ∃y E(x , y)
E(x , y) → N(y)
E(x , y) → x = y

N(a)→ E(a, ⊥1)

→ a =⊥1 → all constraints satisfied!

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 180 / 184

Dealing with EGDs

Example
D = {N(a)}, Σ :

N(x) → ∃y E(x , y)
E(x , y) → N(y)
E(x , y) → x = y

N(a)→ E(a, ⊥1)

→ a =⊥1 → all constraints satisfied!

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 180 / 184

Dealing with EGDs

Example
D = {N(a)}, Σ :

N(x) → ∃y E(x , y)
E(x , y) → N(y)
E(x , y) → x = y

N(a)→ E(a, ⊥1)→ a =⊥1

→ all constraints satisfied!

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 180 / 184

Dealing with EGDs

Example
D = {N(a)}, Σ :

N(x) → ∃y E(x , y)
E(x , y) → N(y)
E(x , y) → x = y

N(a)→ E(a,a)→ a =⊥1

→ all constraints satisfied!

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 180 / 184

Dealing with EGDs

Example
D = {N(a)}, Σ :

N(x) → ∃y E(x , y)
E(x , y) → N(y)
E(x , y) → x = y

N(a)→ E(a,a)→ a =⊥1 → all constraints satisfied!

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 180 / 184

Rewriting TGDs and EGDs

Example

r1 : N(x) → ∃y E(x , y)
r2 : E(x , y) → N(y)
r3 : E(x , y) → x = y

r ′3 : Ebb(x , y) → x = y
r ′2 : Ebb(x , y) → Nb(y)

r ′1 : Nb(x) → ∃y Eb(x , y)

r ′′3 : Eb(x , y) → x = y

No cyclic symbol fi occurs in the constraints above.
Thus, there exists a terminating standard chase sequence.
In this sequence, EGDs are applied as soon as possible.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 181 / 184

Rewriting TGDs and EGDs

Example

r1 : N(x) → ∃y E(x , y)
r2 : E(x , y) → N(y)
r3 : E(x , y) → x = y

r ′3 : Ebb(x , y)

→ x = y
r ′2 : Ebb(x , y) → Nb(y)

r ′1 : Nb(x) → ∃y Eb(x , y)

r ′′3 : Eb(x , y) → x = y

No cyclic symbol fi occurs in the constraints above.
Thus, there exists a terminating standard chase sequence.
In this sequence, EGDs are applied as soon as possible.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 181 / 184

Rewriting TGDs and EGDs

Example

r1 : N(x) → ∃y E(x , y)
r2 : E(x , y) → N(y)
r3 : E(x , y) → x = y

r ′3 : Ebb(x , y) → x = y

r ′2 : Ebb(x , y) → Nb(y)

r ′1 : Nb(x) → ∃y Eb(x , y)

r ′′3 : Eb(x , y) → x = y

No cyclic symbol fi occurs in the constraints above.
Thus, there exists a terminating standard chase sequence.
In this sequence, EGDs are applied as soon as possible.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 181 / 184

Rewriting TGDs and EGDs

Example

r1 : N(x) → ∃y E(x , y)
r2 : E(x , y) → N(y)
r3 : E(x , y) → x = y

r ′3 : Ebb(x , y) → x = y
r ′2 : Ebb(x , y)

→ Nb(y)

r ′1 : Nb(x) → ∃y Eb(x , y)

r ′′3 : Eb(x , y) → x = y

No cyclic symbol fi occurs in the constraints above.
Thus, there exists a terminating standard chase sequence.
In this sequence, EGDs are applied as soon as possible.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 181 / 184

Rewriting TGDs and EGDs

Example

r1 : N(x) → ∃y E(x , y)
r2 : E(x , y) → N(y)
r3 : E(x , y) → x = y

r ′3 : Ebb(x , y) → x = y
r ′2 : Ebb(x , y) → Nb(y)

r ′1 : Nb(x) → ∃y Eb(x , y)

r ′′3 : Eb(x , y) → x = y

No cyclic symbol fi occurs in the constraints above.
Thus, there exists a terminating standard chase sequence.
In this sequence, EGDs are applied as soon as possible.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 181 / 184

Rewriting TGDs and EGDs

Example

r1 : N(x) → ∃y E(x , y)
r2 : E(x , y) → N(y)
r3 : E(x , y) → x = y

r ′3 : Ebb(x , y) → x = y
r ′2 : Ebb(x , y) → Nb(y)

r ′1 : Nb(x)

→ ∃y Eb(x , y)

r ′′3 : Eb(x , y) → x = y

No cyclic symbol fi occurs in the constraints above.
Thus, there exists a terminating standard chase sequence.
In this sequence, EGDs are applied as soon as possible.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 181 / 184

Rewriting TGDs and EGDs

Example

r1 : N(x) → ∃y E(x , y)
r2 : E(x , y) → N(y)
r3 : E(x , y) → x = y

r ′3 : Ebb(x , y) → x = y
r ′2 : Ebb(x , y) → Nb(y)

r ′1 : Nb(x) → ∃y Ebf1(x , y) f1 = f y
r1

(b)

r ′′3 : Eb(x , y) → x = y

No cyclic symbol fi occurs in the constraints above.
Thus, there exists a terminating standard chase sequence.
In this sequence, EGDs are applied as soon as possible.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 181 / 184

Rewriting TGDs and EGDs

Example

r1 : N(x) → ∃y E(x , y)
r2 : E(x , y) → N(y)
r3 : E(x , y) → x = y

r ′3 : Ebb(x , y) → x = y
r ′2 : Ebb(x , y) → Nb(y)

r ′1 : Nb(x) → ∃y Ebf1(x , y) f1 = f y
r1

(b)

r ′′3 : Ebf1(x , y)

→ x = y

No cyclic symbol fi occurs in the constraints above.
Thus, there exists a terminating standard chase sequence.
In this sequence, EGDs are applied as soon as possible.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 181 / 184

Rewriting TGDs and EGDs

Example

r1 : N(x) → ∃y E(x , y)
r2 : E(x , y) → N(y)
r3 : E(x , y) → x = y

r ′3 : Ebb(x , y) → x = y
r ′2 : Ebb(x , y) → Nb(y)

r ′1 : Nb(x) → ∃y Ebf1(x , y) f1 = f y
r1

(b)

r ′′3 : Ebf1(x , y) → x = y

No cyclic symbol fi occurs in the constraints above.
Thus, there exists a terminating standard chase sequence.
In this sequence, EGDs are applied as soon as possible.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 181 / 184

Rewriting TGDs and EGDs

Example

r1 : N(x) → ∃y E(x , y)
r2 : E(x , y) → N(y)
r3 : E(x , y) → x = y

r ′3 : Ebb(x , y) → x = y
r ′2 : Ebb(x , y) → Nb(y)

r ′1 : Nb(x) → ∃y Ebf1(x , y) f1 = f y
r1

(b)

r ′′3 : Ebf1(x , y) → x = y b = f1

No cyclic symbol fi occurs in the constraints above.
Thus, there exists a terminating standard chase sequence.
In this sequence, EGDs are applied as soon as possible.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 181 / 184

Rewriting TGDs and EGDs

Example

r1 : N(x) → ∃y E(x , y)
r2 : E(x , y) → N(y)
r3 : E(x , y) → x = y

r ′3 : Ebb(x , y) → x = y
r ′2 : Ebb(x , y) → Nb(y)

r ′1 : Nb(x) → ∃y Ebb(x , y) ���
��f1 = f y

r1
(b)

r ′′3 : Ebb(x , y) → x = y b = f1

No cyclic symbol fi occurs in the constraints above.
Thus, there exists a terminating standard chase sequence.
In this sequence, EGDs are applied as soon as possible.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 181 / 184

Rewriting TGDs and EGDs

Example

r1 : N(x) → ∃y E(x , y)
r2 : E(x , y) → N(y)
r3 : E(x , y) → x = y

r ′3 : Ebb(x , y) → x = y
r ′2 : Ebb(x , y) → Nb(y)

r ′1 : Nb(x) → ∃y Ebb(x , y)

r ′′3 : Ebb(x , y) → x = y

No cyclic symbol fi occurs in the constraints above.
Thus, there exists a terminating standard chase sequence.
In this sequence, EGDs are applied as soon as possible.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 181 / 184

Rewriting TGDs and EGDs

Example

r1 : N(x) → ∃y E(x , y)
r2 : E(x , y) → N(y)
r3 : E(x , y) → x = y

r ′3 : Ebb(x , y) → x = y
r ′2 : Ebb(x , y) → Nb(y)

r ′1 : Nb(x) → ∃y Ebb(x , y)

r ′′3 : Ebb(x , y) → x = y

No cyclic symbol fi occurs in the constraints above.

Thus, there exists a terminating standard chase sequence.
In this sequence, EGDs are applied as soon as possible.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 181 / 184

Rewriting TGDs and EGDs

Example

r1 : N(x) → ∃y E(x , y)
r2 : E(x , y) → N(y)
r3 : E(x , y) → x = y

r ′3 : Ebb(x , y) → x = y
r ′2 : Ebb(x , y) → Nb(y)

r ′1 : Nb(x) → ∃y Ebb(x , y)

r ′′3 : Ebb(x , y) → x = y

No cyclic symbol fi occurs in the constraints above.
Thus, there exists a terminating standard chase sequence.

In this sequence, EGDs are applied as soon as possible.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 181 / 184

Rewriting TGDs and EGDs

Example

r1 : N(x) → ∃y E(x , y)
r2 : E(x , y) → N(y)
r3 : E(x , y) → x = y

r ′3 : Ebb(x , y) → x = y
r ′2 : Ebb(x , y) → Nb(y)

r ′1 : Nb(x) → ∃y Ebb(x , y)

r ′′3 : Ebb(x , y) → x = y

No cyclic symbol fi occurs in the constraints above.
Thus, there exists a terminating standard chase sequence.
In this sequence, EGDs are applied as soon as possible.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 181 / 184

Results

The rewriting algorithm always terminates;

Σα ∈ CTstd
∃ implies Σ ∈ CTstd

∃ ;

Furthermore, if 6 ∃ cyclic fi in Σα, then Σ ∈ CTstd
∃ ;

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 182 / 184

Current and Future directions

Determine decidable classes of data dependencies,
Consider and extended framework (Datalog[∃,=,F ,¬]),
Define criteria guaranteing termination of one chase sequence,
Determine how to compute one of the terminating sequences,
Further exploiting of EGDs
Complexity (not discussed here)
Support for design tools.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 183 / 184

Thanks!

Questions?

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 184 / 184

[BBC09] S. Baselice, P. A. Bonatti, and G. Criscuolo. On finitely
recursive programs. TPLP, 9(2):213–238, 2009.

[BLMS11] Jean-François Baget, Michel Leclère, Marie-Laure
Mugnier, and Eric Salvat. On rules with existential
variables: Walking the decidability line. Artif. Intell.,
175(9-10):1620–1654, 2011.

[Bon04] P. A. Bonatti. Reasoning with infinite stable models.
Artificial Intelligence, 156(1):75–111, 2004.

[Bon11] P. A. Bonatti. On the decidability of fdnc programs.
Intelligenza Artificiale, 5(1):89–93, 2011.

[CCIL08] F. Calimeri, S. Cozza, G. Ianni, and N. Leone. Computable
functions in ASP: Theory and implementation. In ICLP,
pages 407–424, 2008.

[CGK13] Andrea Calı̀, Georg Gottlob, and Michael Kifer. Taming the
infinite chase: Query answering under expressive relational
constraints. JAIR, 48:115–174, 2013.

[CGMT14] M. Calautti, S. Greco, C. Molinaro, and I. Trubitsyna.
Checking termination of logic programs with function

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 184 / 184

symbols through linear constraints. In RuleML, pages
97–111, 2014.

[CGP10] Andrea Calı̀, Georg Gottlob, and Andreas Pieris. Advanced
processing for ontological queries. PVLDB, 3(1):554–565,
2010.

[CGP15] Marco Calautti, Georg Gottlob, and Andreas Pieris. Chase
termination for guarded existential rules. In PODS, pages
91–103, 2015.

[CGST14] M. Calautti, S. Greco, F. Spezzano, and I. Trubitsyna.
Checking termination of bottom-up evaluation of logic
programs with function symbols. TPLP, 2014.

[CGT13] M. Calautti, S. Greco, and I. Trubitsyna. Detecting
decidable classes of finitely ground logic programs with
function symbols. In PPDP, 2013.

[DNR08] A. Deutsch, A. Nash, and J. B. Remmel. The chase
revisited. In PODS, pages 149–158, 2008.

[ES10] Thomas Eiter and Mantas Simkus. FDNC: decidable
nonmonotonic disjunctive logic programs with function
symbols. TOCL, 11(2), 2010.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 184 / 184

[FKMP05] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: semantics and query answering. TCS,
336(1):89–124, 2005.

[GHK+13] Bernardo Cuenca Grau, Ian Horrocks, Markus Krotzsch,
Clemens Kupke, Despoina Magka, Boris Motik, and Zhe
Wang. Acyclicity notions for existential rules and their
application to query answering in ontologies. JAIR,
47:741–808, 2013.

[GM14] T. Gogacz and J. Marcinkowski. All-instances termination
of chase is undecidable. In ICALP, pages 293–304, 2014.

[GMT13a] S. Greco, C. Molinaro, and I. Trubitsyna. Logic
programming with function symbols: Checking termination
of bottom-up evaluation through program adornments.
TPLP, 13(4-5):737–752, 2013.

[GMT13b] Sergio Greco, Cristian Molinaro, and Irina Trubitsyna.
Bounded programs: A new decidable class of logic
programs with function symbols. In IJCAI, 2013.

[GO13] Gösta Grahne and Adrian Onet. Anatomy of the chase.
CoRR, abs/1303.6682, 2013.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 184 / 184

[GS10] S. Greco and F. Spezzano. Chase termination: A
constraints rewriting approach. PVLDB, 3(1):93–104, 2010.

[GST07] M. Gebser, T. Schaub, and S. Thiele. Gringo: A new
grounder for answer set programming. In LPNMR, pages
266–271, 2007.

[GST11] Sergio Greco, Francesca Spezzano, and Irina Trubitsyna.
Stratifi- cation criteria and rewriting techniques for checking
chase termination. PVLDB, 4(11):1158–1168, 2011.

[GST15] Sergio Greco, Francesca Spezzano, and Irina Trubitsyna.
Checking chase termination: Cyclicity analysis and
rewriting techniques. TKDE, 27(3):621–635, 2015.

[LL09] Y. Lierler and V. Lifschitz. One more decidable class of
finitely ground programs. In ICLP, pages 489–493, 2009.

[Mar09] B. Marnette. Generalized schema-mappings: from
termination to tractability. In PODS, pages 13–22, 2009.

[Mei10] Michael Meier. On the Termination of the Chase Algorithm.
Albert-Ludwigs-Universitat Freiburg (Germany), 2010.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 184 / 184

[MSL09] M. Meier, M. Schmidt, and G. Lausen. On chase
termination beyond stratification. CoRR, abs/0906.4228,
2009.

[One13] Adrian Onet. The chase procedure and its applications in
data exchange. In Data Exchange, Integration, and
Streams, pages 1–37. 2013.

[RS14] F. Riguzzi and T. Swift. Terminating evaluation of logic
programs with finite three-valued models. ACM TOCL,
2014.

[Syr01] T. Syrjanen. Omega-restricted logic programs. In LPNMR,
pages 267–279, 2001.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 184 / 184

	Part I
	Part II

