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Logic Program Termination Analysis

1. What kind of Logic Programs?
1 Rules with function symbols.
2 Existential rules.

Many applications in knowledge representation, logic programming,
and databases: answer set programming, ontological query
answering, data exchange, etc.

2. Termination Analysis

The evaluation of such programs might not terminate.
Establishing termination is undecidable.
Termination Criteria: sufficient conditions guaranteeing
termination.
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Part I

Logic Programs with Function Symbols
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Context and Motivations

Function Symbols
I Make modeling easier and the resulting encodings more readable

and concise.
I Increase the expressive power.
I Allow us to overcome the inability of handling infinite domains.

Problem: Program evaluation might not terminate and it is
undecidable whether the evaluation terminates.
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Top-down Evaluation
Apt, Bezem. Acyclic programs. ICLP (1990).
Bol, Apt, Klop. An analysis of loop checking mechanism for logic programs. TCS
(1991).
Sagiv. A termination test for logic programs. ICLP (1991).
Apt, Pedreschi. Reasoning about termination of pure Prolog programs. I&C (1993).
De Schreye, Decorte. Termination of logic programs: The never-ending story. JLP
(1994).
Lindenstrauss, Sagiv. Automatic termination analysis of logic programs. ICLP
(1997).
Codish, Taboch. A semantic basis for the termination analysis of logic programs.
JLP (1999).
Ohlebusch. Termination of logic programs: Transformational methods revisited.
AAECC (2001).
Pedreschi, Ruggieri, Smaus. Classes of terminating logic programs. TPLP (2002).
Bonatti. Reasoning with infinite stable models. AIJ (2004).
Serebrenik, De Schreye. On termination of meta-programs. TPLP (2005).
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Top-down Evaluation
Bruynooghe, Codish, Gallagher, Genaim, Vanhoof. Termination analysis of logic
programs through combination of type-based norms. ACM TOCL (2007).
Nguyen, Giesl, Schneider-Kamp, De Schreye. Termination analysis of logic
programs based on dependency graphs. LOPSTR (2007).
Baselice, Bonatti, Criscuolo. On finitely recursive programs. TPLP (2009).
Schneider-Kamp, Giesl, Nguyen. The dependency triple framework for termination
of logic programs. LOPSTR (2009).
Schneider-Kamp, Giesl, Serebrenik, Thiemann. Automated termination proofs for
logic programs by term rewriting. ACM TOCL (2009).
Nishida, Vidal. Termination of narrowing via termination of rewriting. Appl. Algebra
Eng. Commun. Comput. (2010).
Schneider-Kamp, Giesl, Stroder, Serebrenik, Thiemann. Automated termination
analysis for logic programs with cut. TPLP (2010).
Eiter, Simkus. FDNC: Decidable nonmonotonic disjunctive logic programs with
function symbols. ACM TOCL (2010).
Voets, De Schreye. Non-termination analysis of logic programs with integer
arithmetics. TPLP (2011).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 7 / 184



Bottom-up Evaluation
Shmueli. Decidability and Expressiveness of Logic Queries. PODS (1987).
Ramakrishnan, Bancilhon, Silberschatz. Safety of Recursive Horn Clauses With
Infinite Relations. PODS (1987).
Kifer, Ramakrishnan, Silberschatz. An Axiomatic Approach to Deciding Query
Safety in Deductive Databases. PODS (1988).
Krishnamurthy, Ramakrishnan, Shmueli. A framework for testing safety and
effective computability. SIGMOD (1988), JCSS (1996).
Chomicki. A decidable class of logic programs with function symbols. TR 1990.
Chomicki, Imielinski. Finite representation of infinite query answers. TODS (1993).
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Bottom-up Evaluation
Syrjanen. Omega-restricted logic programs. LPNMR (2001).
Gebser, Schaub, Thiele. Gringo : A new grounder for answer set programming.
LPNMR (2007).
Calimeri, Cozza, Ianni, Leone. Computable Functions in ASP: Theory and
Implementation. ICLP (2008).
Lierler, Lifschitz. One more decidable class of finitely ground programs. ICLP
(2009).
Greco, Spezzano, Trubitsyna. On the Termination of Logic Programs with Function
Symbols. ICLP (2012)
Calautti, Greco, Trubitsyna. Detecting decidable classes of finitely ground logic
programs with function symbols. PPDP (2013).
Greco, Molinaro, Trubitsyna. Logic programming with function symbols: Checking
termination of bottom-up evaluation through program adornments. TPLP (2013).
Greco, Molinaro, Trubitsyna. Bounded Programs: A New Decidable Class of Logic
Programs with Function Symbols. IJCAI (2013).
Calautti, Greco, Molinaro, Trubitsyna. Checking Termination of Logic Programs with
Function Symbols through Linear Constraints. RuleML (2014).
Calautti, Greco, Spezzano, Trubitsyna. Checking Termination of Bottom-Up
Evaluation of Logic Programs with Function Symbols. TPLP (2014).
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Top-down vs. Bottom-up Evaluation

Example

p(X)← p(X).

Non-terminating top-down evaluation.
Completely harmless under bottom-up evaluation.

We consider bottom-up evaluation.
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Bottom-up Evaluation

Example

len([a,b,c],0).
len(Tail,s(N))← len(list(Head,Tail),N).

Bottom-up evaluation:

len([b,c],s(0)) ← len([a,b,c],0) yields len([b,c],s(0))
len([c],s(s(0))) ← len([b,c],s(0)) yields len([c],s(s(0)))
len([],s(s(s(0)))) ← len([c],s(s(0))) yields len([],s(s(s(0))))

Fixpoint, the evaluation TERMINATES.
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Bottom-up Evaluation

Example

nat(0).
nat(s(X))← nat(X).

Bottom-up evaluation:

nat(s(0)) ← nat(0) yields nat(s(0))

nat(s(s(0))) ← nat(s(0)) yields nat(s(s(0)))
nat(s(s(s(0)))) ← nat(s(s(0))) yields nat(s(s(s(0))))

...

The evaluation does NOT terminate.
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Termination Criteria

(Decidable) Sufficient conditions guaranteeing the bottom-up
evaluation termination.
The use of function symbols is restricted.

“Terminating” Programs
We say that a program P is terminating iff the evaluation of P ∪ D
terminates for every finite set of facts D.

Termination Criteria
Define a decidable condition C such that for every program P

P satisfies C ⇒ P is terminating.
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Termination Criteria

ω-restricted programs [Syr01]
λ-restricted programs [GST07]
Finite domain programs [CCIL08]
Argument-restricted programs [LL09]
Safe and Γ-acyclic programs [CGST14]
Mapping-restricted programs [CGT13]
Bounded programs [GMT13b]
Rule- and cycle-bounded programs [CGMT14]
Program Adornment technique [GMT13a]

Size-restricted programs, IJCAI 2015, talk on Wed 29th afternoon!
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Syntax: Datalog with Function Symbols

Definition
We are given (pairwise disjoint) sets of constants, variables,
function symbols (with arity > 0), and predicates (with arity ≥ 0).

A term is either a constant, a variable, or of the form f (t1, . . . , tm),
where f is a function symbol of arity m and the ti ’s are terms.
An atom is of the form p(t1, . . . , tn), where p is a predicate of arity
n and the ti ’s are terms.
A (Datalog) rule is of the form

A0︸︷︷︸
head

← A1, . . . ,An︸ ︷︷ ︸
body

where n ≥ 0 and the Ai ’s are atoms.
A (Datalog) program is a finite set of Datalog rules.
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Syntax: Datalog with Function Symbols

We consider safe programs: every variable in the head must appear in
the body.

Example (Safe program)

p(f(X),Y)← q(X),r(Y).

Example (Unsafe program)

p(f(X),Y)← q(X),r(Z).

No disjunction and negation (for now).

Function symbols are uninterpreted (they are not evaluated).
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Syntax: Datalog with Function Symbols

Definition
The arguments of a program P are expressions of the form p[i] where
p is a predicate appearing in P and 1 ≤ i ≤ arity(p).

Example

p(X,Y) ← b(X,Y).
q(f(X)) ← p(X,Y).

The arguments of this program are b[1], b[2], p[1], p[2], and q[1].
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Termination Criteria
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λ-Restricted Programs [GST07]
Basic Idea: Assign a level (i.e., an integer) λ(p) to each predicate p so
that all head variables in rules defining p are bound by predicates p′

with strictly lower level.

Example
q(X) ← p(X),r(X).

p(f(X)) ← q(X).

The program is λ-restricted.

Example

p(X) ← p(X).

No function symbols⇒ The evaluation always terminates.

λ(p) > λ(p)⇒ The program is not λ-restricted.
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Finite Domain Programs [CCIL08]

Argument Graph
It describes the propagation of values among arguments.

the nodes are the arguments of the program, and

there is an edge from p[i] to q[j] if there is a rule where a term is propagated
from p[i] to q[j].

Example (Argument Graph)

q(X) ← q(f(X)).
p(f(X)) ← q(X),r(X,Y).

q[1] p[1] x	
  r[1] x	
  r[2] 
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Finite Domain Programs [CCIL08]

Example

q(X) ← q(f(X)).
p(f(X)) ← q(X),r(X,Y).

q[1] p[1] x	
  r[1] x	
  r[2] 

Finite domain arguments:

r[1] and r[2], as they appear in no head.
q[1], as the term in the head of the 1st rule is a subterm of that in
the body.
p[1], as r[1] is finite domain and is not “recursive” with p[1]

All arguments are finite domain⇒ The program is finite domain.
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Relative Expressivity

Finite Domain            λ-Restricted 

Theorem
λ-Restricted ∦ Finite Domain.

Example (Finite Domain but not λ-Restricted)
q(X) ← q(f(X)).

p(f(X)) ← q(X),r(X,Y).

Example (λ-Restricted but not Finite Domain)
q(X) ← p(X),r(X).

p(f(X)) ← q(X).
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Argument Restriction [LL09]

Basic idea: assign to each argument an upper bound of the depth of
terms that may occur in that argument.

Term Depth
Depth d(X , t) of a variable X in a term t containing X :

d(X , X ) = 0
d(X , f (t1, . . . , tm)) = 1 + max

1≤i≤m : ti contains X
d(X , ti).

Example

d(X, f(X,g(X),Y))
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d(X , X ) = 0
d(X , f (t1, . . . , tm)) = 1 + max

1≤i≤m : ti contains X
d(X , ti).

Example

d(X, f(X,g(X),Y)) = 2

d(Y, f(X,g(X),Y)) = 1
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Argument Restriction [LL09]
Basic idea: assign to each argument an upper bound of the depth of
terms that may occur in that argument.

Example

p(f(X)) ← q(X)

q(X) ← p(f(X))

We need to find a function φ
(assigning an integer to each argument) such that:

φ(p[1]) ≥ φ(q[1]) + 1− 0, and

φ(q[1]) ≥ φ(p[1]) + 0− 1.

The program is argument-restricted
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Relative Expressivity

Theorem
Finite Domain ( Argument Restricted.
λ-Restricted ( Argument Restricted.
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Argument Restriction [LL09]

Simple and easy (polynomial time) to compute.

Limitation: No distinction between different function symbols.

Example

p(f(f(X)))← p(g(X))

We need to find a function φ such that

φ(p[1]) ≥ φ(p[1]) + 1

No such φ exists. The program is not argument-restricted...
... but the program evaluation always terminates.

Argument restriction can be used as a starting point for more complex
analysis.
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Bounded Programs [GMT13b]

Basic Idea:

Start with a set A of “limited” arguments.
Iteratively apply a (monotone) operator Ψ(A) which derives more
arguments as “limited”.
If, eventually, all arguments are derived as limited, then the
program is bounded.

The operator relies on two tools:
the activation graph, and
the labeled argument graph.
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Termination Analysis Tools — Activation Graph

Activation Graph
It describes “activation” of rules.

the nodes are the rules of the program, and

there is an edge from ri to rj iff the head of ri unifies with some body atom of rj .

Example
r1 : q(f(X))← p(X)
r2 : p(g(X))← q(X)

r1 r2 
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Example
r1 : q(f(X))← p(X)
r2 : p(g(X))← q(X)

r1 r2 

Example
r1 : q(f(X))← p(X)
r2 : p(g(X))← q(g(X))

r1 r2 

A rule might be applied an infinite number of times only if it depends on a cycle.
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Termination Analysis Tools — Labeled Argument
Graph
Labeled Argument Graph
It describes the propagation of values among arguments.

the nodes are the arguments of the program, and

there is an edge from p[i] to q[j] if there is a rule where a term is propagated
from p[i] to q[j].

Example

r1 : q(f(X),X) ← b(Y), p(X).
r2 : p(X) ← q(f(X),Y).

q[1] p[1] x	
  q[2] x	
  b[1] 
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f, r1, 2 
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Labeled Argument Graph
It describes the propagation of values among arguments.

the nodes are the arguments of the program, and

there is an edge from p[i] to q[j] if there is a rule where a term is propagated
from p[i] to q[j].

Example

r1 : q(f(X),X) ← b(Y), p(X).
r2 : p(X) ← q(f(X),Y).

q[1] p[1] x	
  q[2] x	
  b[1] 

f, r1, 2 

f, r2, 1 

є, r1, 2 
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Cycle Classification

Two classifications of cycles in the labeled argument graph:

The aim is to identify “harmless” cycles.

1. Balanced cycle

1. Active cycle

2. Growing cycle

2. Inactive cycle

3. Failing cycle

⇑
The activation graph is also used

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 40 / 184



Cycle Classification

Two classifications of cycles in the labeled argument graph:

The aim is to identify “harmless” cycles.

1. Balanced cycle

1. Active cycle

2. Growing cycle

2. Inactive cycle

3. Failing cycle

⇑
The activation graph is also used

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 40 / 184



Cycle Classification

Two classifications of cycles in the labeled argument graph:

The aim is to identify “harmless” cycles.

1. Balanced cycle 1. Active cycle

2. Growing cycle 2. Inactive cycle

3. Failing cycle

⇑
The activation graph is also used

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 40 / 184



Cycle Classification

Two classifications of cycles in the labeled argument graph:

The aim is to identify “harmless” cycles.

1. Balanced cycle 1. Active cycle

2. Growing cycle 2. Inactive cycle

3. Failing cycle ⇑
The activation graph is also used

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 40 / 184



Balanced, Growing, and Failing Cycles

Classification on the basis of the first component of the edge labels.

Balanced / Growing / Failing Cycles
Balanced cycle: a term propagated through the whole cycle remains the same.

Growing cycle: a term propagated through the whole cycle grows.

Failing cycle: a term propagated through the whole cycle decreases or cannot
really go through the entire cycle.

Terms in an argument might grow infinitely only if this argument
depends on a growing cycle.
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Balanced, Growing, and Failing Cycles

Balanced cycle

r1 : q(f(X))← p(X)
r2 : p(X)← q(f(X))

p[1]	
   q[1]	
  

f,	
  r1,	
  1	
  

f,	
  r2,	
  1	
  

f f̄ ≈ ε

p(a).
q(f(a)) ← p(a).

p(a) ← q(f(a)).
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Balanced cycle

r1 : q(f(X))← p(X)
r2 : p(X)← q(f(X))

p[1]	
   q[1]	
  

f,	
  r1,	
  1	
  

f,	
  r2,	
  1	
  

f f̄ ≈ ε

Growing cycle

r1 : q(f(X))← p(X)
r2 : p(X)← q(X)

p[1]	
   q[1]	
  

f,	
  r1,	
  1	
  

є,	
  r2,	
  1	
  

\[  

f ε ≈ f

Failing cycle

r1 : q(f(X))← p(X)
r2 : p(X)← q(h(X))

p[1]	
   q[1]	
  

f,	
  r1,	
  1	
  

h,	
  r2,	
  1	
  

f h̄

p(a).
q(f(a)) ← p(a).

p(a) ← q(h(a)).
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Balanced, Growing, and Failing Cycles
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Active and Inactive Cycles
Classification on the basis of the second component of the edge labels.

The activation graph is also used.

Active / Inactive Cycles
Active cycle: the corresponding rules form a cycle in the activation graph.

Inactive cycle: otherwise.

Example (Active Cycle)
r1 : q(f(X)) ← p(X).
r2 : p(X) ← q(X).

p[1] q[1] 

f, r1, 1 

є, r2, 1 

r1 r2 

Example (Inactive Cycles)
r1 : p(f(X),g(X)) ← p(X,X).

p[1] p[2] 

g, r1, 1 

f, r1, 1 

f, r1, 1 g, r1, 1 

r1 

Only active cycles may be “dangerous”.
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Argument-bounded Cycles

The depth of terms in an argument might grow only if this argument
depends on an active growing cycle.

However . . .

Example

r1 : q(f(X)) ← p(X),b(X)
r2 : p(X) ← q(X).

p[1] q[1] 
f, r1, 1 

є, r2, 1 

b[1] f, r1, 2 

Since b[1] is limited, the number of values propagated in q[1] is finite.
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Twin Cycles

Example (List length)

r0 : count([a,b,c],0). count([a,b,c],0)
r1 : count(L,s(I))← count([X|L],I). count([b,c],s(0))

count([c],s(s(0)))
Query goal : count([ ],N). count([ ],s(s(s(0))))

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 47 / 184



Twin Cycles

Example (List length)

r0 : count([a,b,c],0). count([a,b,c],0)
r1 : count(L,s(I))← count([X|L],I). count([b,c],s(0))

count([c],s(s(0)))
Query goal : count([ ],N). count([ ],s(s(s(0))))

The arguments may influence each other even if
they do not exchange values

The growth of count[2] is bounded by the reduction of
count[1].
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Twin Cycles

Example (Append)

magic append([a,b], [c,d]).
magic append(L1,L2)← magic append([X|L1],L2).

append([ ],L,L)← magic append([ ],L).
append([X|L1],L2, [X|L3])← magic append([X|L1],L2),

append(L1,L2,L3).
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Twin Cycles
Cycles are classified on the basis of the last two components of the
edge labels.

Twin cycles describe the propagation of values through the same
atoms of the same rules (the last two components of the edge labels
coincide).

Example

r1 : q(X,Y)← p(X,f(Y)).
r2 : p(f(X),Y)← q(X,Y).

π1 and π2 are twin cycles.
The growth of values in π1 is
bounded by the reduction in π2.

 q[2] 

f,	
  r1	
  ,1 

  p[2] 
є,	
  r2	
  ,1 

 

π2 

 p[1] 

є,	
  r1	
  ,1 

 
f,	
  r2	
  ,1 

 

π1  q[1] 
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Bounded Programs

Start with a set A of limited arguments.
Then, add an argument p[i] if, for every cycle π on which p[i]
depends:

1 π is not active or not growing;
2 π has a twin cycle π′ which is not balanced and goes only through

arguments in A; or
3 π is argument-bounded.

Example
count([a,b,c],0).

r : count(L,s(I))← count([X|L],I).

Both π and π′ are active cycles;
π is failing, then count[1] is limited (Condition 1);
π′ is a twin of π. Since π is not balanced and its arguments are
limited, count[2] is also limited (Condition 2).
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Relative Expressivity

Finite Domain            λ-Restricted 

Argument Restricted 

Bounded 

Theorem
Argument Restricted ( Bounded.
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Rule-bounded programs [CGMT14]

Many practical programs contain rules where the “size” of the head atom does not
increase w.r.t. the “size” of a body atom.

Example (Bubble Sort)
bub(L, [ ], [ ])← input(L).
bub([Y|T], [X|Cur],Sol)← bub([X|[Y|T]],Cur,Sol), X ≤ Y.
bub([X|T], [Y|Cur],Sol)← bub([X|[Y|T]],Cur,Sol), Y < X.
bub(Cur, [ ], [X|Sol])← bub([X|[ ]],Cur,Sol).
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Rule-bounded programs [CGMT14]

Many practical programs contain rules where the “size” of the head atom does not
increase w.r.t. the “size” of a body atom.

Example (Tree Visit)

visit(Tree, [ ], [ ])← input(Tree).
visit(Left, [Root|Visited], [Right|ToVisit])←

visit(tree(Root,Left,Right),Visited,ToVisit).
visit(Next,Visited,ToVisit)← visit(null,Visited, [Next|ToVisit]).

Example (List Concatenation)
reverse(L1, [ ]) ← input1(L1).
reverse(L1, [X|L2]) ← reverse([X|L1],L2).
append(L1,L2) ← reverse([ ],L1), input2(L2).
append(L1, [X|L2]) ← append([X|L1],L2).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 55 / 184



Rule-bounded programs [CGMT14]

Many practical programs contain rules where the “size” of the head atom does not
increase w.r.t. the “size” of a body atom.

Example (Tree Visit)

visit(Tree, [ ], [ ])← input(Tree).
visit(Left, [Root|Visited], [Right|ToVisit])←

visit(tree(Root,Left,Right),Visited,ToVisit).
visit(Next,Visited,ToVisit)← visit(null,Visited, [Next|ToVisit]).

Example (List Concatenation)
reverse(L1, [ ]) ← input1(L1).
reverse(L1, [X|L2]) ← reverse([X|L1],L2).
append(L1,L2) ← reverse([ ],L1), input2(L2).
append(L1, [X|L2]) ← append([X|L1],L2).

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th , 2015 55 / 184



Rule-bounded programs [CGMT14]

Basic idea: check if the size of the head is bounded by the size of
a body atom.

Linear constraints are used to check this condition.

Question: How do we measure the size of an atom?
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Rule-bounded programs - Notions of Size
Term size:

t = f(X, c, g(Y,Z) )

⇓
size(t) = 3 + (x + 0 + size(g(Y,Z)))

= 3 + (x + 0 + (2 + y + z))

Intuition: A template for all possible sizes the term may have during
the program evaluation.

Atom size: Linear combination of the size of its terms.

A = p(t1, . . . , tn)
⇓

size(A) = αp1 · size(t1) + . . .+ αpn · size(tn)

Integer coefficients αp1 , . . . , αpn will be chosen depending on the
program structure.
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Rule-bounded program - Example
Example (List Length)

r1 : len([a,b,c,d],0).
r2 : len(Tail,s(N))← len(list(Head,Tail),N).

We need to check:

size(body(r2)) ≥ size(head(r2))

α1 · (2 + head + tail) + α2 · n ≥ α1 · tail + α2 · (1 + n)

Find α1 and α2 s.t. the inequality holds for all head, tail, n ∈ N

2 · α1 + α1 · head + α1 · tail + α2 · n ≥ α1 · tail + α2 + α2 · n

2 · α1 ≥ α2

We can choose α1 = α2 = 1⇒ the program is rule-bounded.
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Rule-bounded programs - Another Example
Example (Bubble sort)

sort([b,a,d,h,e], [ ], [ ]).
sort([Y|T], [X|Temp],Sorted) ← sort([X|[Y|T]]),Temp,Sorted),X ≤ Y.
sort([X|T], [Y|Temp],Sorted) ← sort([X|[Y|T]]),Temp,Sorted),Y < X.
sort(Temp, [ ], [X|Sorted]) ← sort([X],Temp,Sorted)).



α1 ·(4+x +y +t) + α2 ·temp + α3 ·sorted ≥
α1 ·(2+y +t) + α2 ·(2+x +temp) + α3 ·sorted

α1 ·(4+x +y +t) + α2 ·temp + α3 ·sorted ≥
α1 ·(2+x +t) + α2 ·(2+y +temp) + α3 ·sorted

α1 ·(2 + x) + α2 ·temp + α3 ·sorted ≥
α1 ·temp + α3 ·(2 + x + sorted)

A possible solution is α1 = 2, α2 = 2, α3 = 1
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Relative Expressivity

Finite Domain            λ-Restricted 

Argument Restricted 

Bounded 

Rule-bounded 

Theorem
Finite Domain ( Rule-bounded.
λ-Restricted ( Rule-bounded.
Argument Restricted ∦ Rule-bounded.
Bounded ∦ Rule-bounded.
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Program Adornment [GMT13a]

The technique can be used in conjunction with current termination
criteria allowing them to detect more programs having a
terminating evaluation.

The technique transforms a program P into an (adorned)
“equivalent” program Pµ.

The aim is to apply termination criteria to the adorned program Pµ

rather than the original program P.
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Program Adornment

Suppose we want to check if the evaluation of a program P
terminates by applying a criterion C.
We first transform P into an adorned program Pµ.
Then, we apply criterion C to Pµ (rather than the original program
P).
(Soundness) If Pµ satisfies criterion C, then the evaluation of the
original program P terminates.
This approach strictly enlarges the class of programs identified by
criterion C.
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Example Example	
  
	
  Original	
  program 	
   	
   	
   	
   	
  	
  	
  	
  	
  

p(X,X)← base(X)
q(X,Y )← p(X,Y )
p( f (X),g(X))← q(X,X)
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Example Example	
  

Each	
  adorned	
  rule	
  is	
  obtained	
  from	
  a	
  rule	
  in	
  the	
  
original	
  program	
  by	
  adding	
  adornments	
  which	
  keep	
  

track	
  of	
  the	
  structure	
  of	
  the	
  terms	
  that	
  can	
  be	
  
propagated	
  during	
  the	
  bodom-­‐up	
  evalua+on.	
  

	
  Original	
  program 	
   	
   	
   	
   	
  	
  	
  	
  Adorned	
  program	
  

p(X,X)← base(X)
q(X,Y )← p(X,Y )
p( f (X),g(X))← q(X,X)

pεε (X,X)← baseε (X)
qεε (X,Y )← pεε (X,Y )
p f1g1 ( f (X),g(X))← qεε (X,X)
q f1g1 (X,Y )← p f1g1 (X,Y )
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Example Example	
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  program	
  is	
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  to	
  the	
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in	
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  following	
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  the	
  minimal	
  model	
  of	
  the	
  original	
  
program	
  can	
  be	
  obtained	
  from	
  the	
  minimal	
  model	
  of	
  the	
  

adorned	
  program	
  by	
  dropping	
  adornments.	
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Adornment AlgorithmAdornment	
  Algorithm	
  
	
  	
  	
  Original	
  program 	
  	
  
p(X, f (X))← base(X)
p(X, f (X))← p(Y,X),base(Y )
p(X,Y )← p( f (X), f (Y ))
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p(X,Y )← p( f (X), f (Y ))

pε f1 (X, f (X))← baseε (X)
p f1 f2 (X, f (X))← pε f1 (Y,X),baseε (Y )
pε f1 (X,Y )← p f1 f2 ( f (X), f (Y ))

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  Adorned	
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  program	
   	
   	
  	
  	
  	
  	
  	
  	
  	
   	
   	
  	
  	
  	
  	
  	
  predicate	
  symbols	
  	
  	
  	
  	
  	
  	
  	
  definiDons	
  

baseε

pε f1

p f1 f2

f1 = f (ε)
f2 = f ( f1)

	
  	
   	
   	
  	
   	
   	
   	
   	
  is	
  not	
  coherently	
  adorned	
  because	
  Y	
  is	
  associated	
  
with	
  the	
  two	
  different	
  adornment	
  symbols	
  f1	
  and	
  ε	
  	
  

p f1 f2 (Y,X),baseε (Y )
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Properties
Theorem
The adornment algorithm always terminates.

Theorem
Let P be a program and Pµ the adorned version of P. Then, the least
model of P is equal to the least model of Pµ with adornments dropped
from predicates.

Theorem
Let P be a program and Pµ the adorned version of P. If Pµ satisfies a
termination criterion C, then the evaluation of P ∪ D terminates for any
finite set of (flat) database facts D.

Theorem
By applying a termination criterion to adorned programs we are able to
identify more programs whose evaluation terminates.
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Dealing with Negation and Disjunction

Definition
A Datalog∨,¬ rule is of the form

A1 ∨ · · · ∨ Am ← B1, . . . ,Bk ,¬C1, . . . ,¬Cn

where m > 0, k ≥ 0, n ≥ 0, and the Ai ’s, Bi ’s, Ci ’s are atoms.

A Datalog∨,¬ program is a finite set of Datalog∨,¬ rules.

Semantics: Stable Model Sematics.

We want to check if a Datalog∨,¬ program has a finite number of stable
models, each of finite size and that can be computed.
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Dealing with Negation and Disjunction

We want to check if a Datalog∨,¬ program P has a finite number of
stable models, each of finite size and that can be computed.

We derive a Datalog program st(P) from P as follows.

Each rule
A1 ∨ · · · ∨ Am ← B1, . . . ,Bk ,¬C1, . . . ,¬Cn

in P is replaced with m Datalog rules

Ai ← B1, . . . ,Bk 1 ≤ i ≤ m

Proposition
If st(P) satisfies a termination criterion, then P has a finite number of
stable models, each of them is of finite size and can be computed.
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Conclusions

The evaluation of logic programs with function symbols might not
terminate, and establishing termination is not decidable.
One solution: (Sufficient) Termination Conditions.
Related lines of research:

I Ensure decidability of some reasoning tasks even if there might be
infinite and infinitely many stable models (e.g., FDNC programs
[ES10, Bon11], Finitary Programs [Bon04], Finitely Recursive
Programs [BBC09]).

I Finite well-founded model [RS14].
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Directions for Future Work
1 Combining termination criteria.

One approach: identify arguments that are “limited” even when
the program is not entirely recognized as terminating.

I support the user in the problem formulation;
I provide limited arguments to other techniques which can leverage

this kind of information.

2 Exploiting negation and disjunction.

Example

p(f (X ))← p(X ),¬p(X )

will be analyzed like

p(f (X ))← p(X ),���
�¬p(X )

3 Interpreted function symbols.
4 Testing Local Stratification.
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Thanks!

Questions?
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Part II

Existential Rules
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Existential rules

Special rules whose head atoms:
may have existentially quantified variables,
may be equality conditions (between two variables).

Used in a variety of contexts:

in databases to define integrity constraints;

in data integration and data exchange to define schema
mappings;

for knowledge representation and ontological reasoning
(Datalog±).
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Integrity constraints in databases

Example

emp(Emp#,Name,Address) worksFor(Emp#,Prj#)

Inclusion dependencies and foreign keys:

worksFor(E ,P)→ ∃N ∃A emp(E ,N,A)

Functional Dependencies and internal keys

emp(E ,N1,Pr1) ∧ emp(E ,N2,Pr2)→ N1 = N2
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Schema Mappings in Data Exchange

Data Exchange: Transform data structured under a source schema
into data structured under a different target schema.

Example

Company A Company B

empA(Emp#,Name,Address,Salary) empB(Emp#,Name,Phone,Salary)

Company A is acquired by Company B

empA(E ,N,A,S)→ ∃P empB(E ,N,P,S)
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Encoding Ontologies
Plain Datalog allows for encoding some ontological axioms:
TGDs can also express other important ontological axioms:

Concept Inclusions:
∀X emp(X )→ person(X )

(Inverse) Relation Inclusion:
∀X ∀Y manages(X ,Y )→ isManaged(Y ,X )

Relation Transitivity:
∀X ∀Y ∀Z mgs(X ,Y ),mgs(Y ,Z )→ mgs(X ,Z )

Participation:
∀X emp(X )→ ∃Y report(X ,Y )

Disjointness:
∀X emp(X ), customer(X )→ false

Functionality:
∀X ∀Y ∀Z reports(X ,Y ), reports(X ,Z )→ Y = Z
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The Problem
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Answering queries under constraints

The Problem
Input:

A database D (set of ground facts),
A set of data dependencies (integrity constraints) Σ,
A (boolean) conjunctive query Q

Question:
D ∪ Σ |= Q

Very old problem: CQ answering over incomplete databases

Undecidable in the general case
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Answering queries under constraints

The Problem
Data dependencies:

Tuple generating dependencies (TGDs):

∀X ∀Y ϕ(X ,Y )→ ∃Z ψ(X ,Z )

Equality generating dependencies (EGDs):

∀X ϕ(X )→ X1 = X2

ϕ(X ,Y ), ϕ(X ) and ψ(Z ,X ) are conjunctions of atoms, X1,X2 ∈ X .

K = D ∪ Σ is called knowledge base.
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Answering queries under constraints
Example (Models and answers)

Database: D = {person(john)}
Data dependencies Σ:

∀X person(X )→ ∃Z fatherOf (Z ,X )
∀X ∀Y fatherOf (X ,Y ),person(Y )→ person(X )

Queries:
Q1 = ∃X fatherOf (X , john)
Q2 = ∃X fatherOf (john,X )

Answers:

D ∪ Σ |= Q1 certain(Q1, (D,Σ)) = ”yes”
D ∪ Σ 6|= Q2 certain(Q2, (D,Σ)) = ”no”

All models of D ∪ Σ contain an atom fatherOf (x , john),
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Datalog± (Syntax)

Datalog variant for ontological reasoning allowing in the head:
existential variables (TGDs)
Equality atoms (EGDs)
Constant false (Denial constraints)

Also denoted as Datalog[∃,=,F ]

More expressive than several ontological reasoning languages (e.g.
UML Class Diagrams, DL-Lite, ELHI¬, F-Logic Lite).

Query answering under Datalog± is undecidable
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Query answering is undecidable

⇒

Determine decidable classes of queries
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Answering queries over incomplete databases

Definition (Incomplete databases/Naive tables)
Databases may be incomplete, that is may contain (labeled) nulls (of
the form ⊥i ), representing the presence of unknown values.

Definition (Possible worlds (under CWA))
Given a possibly incomplete database D, POSS(D) denotes the set of
ground databases obtained from D by replacing nulls with constants.

Example (POSS(D))
D = {person(john),person(frank), fatherOf (⊥1, john)}
POSS(D) (under CWA) contains:

I {person(john),person(frank), fatherOf (john, john)}
I {person(john),person(frank), fatherOf (frank , john)}
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Answering queries over incomplete databases

Definition (certain answer)
certain(D) = database derived from D by deleting tuples with
nulls.
certain(Q,D) =

⋂{ Q(R) | R ∈ POSS(D) }

Theorem (weak representation systems)
For union of conjunctive queries

certain(Q(D)) = certain(Q,D)

Certain answers can be computed by
1 Evaluating (naively) Q(D)

2 Removing tuples with nulls
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Answering queries under constraints

Definition (Model)
Given a knowledge base K = D ∪ Σ, M is a model of K if M |= K .

Definition (Homomorphism)
Mapping h : Nulls → Nulls ∪ Constants.

Definition (Possible worlds under OWA)
POSS(M) = { R | h(M) ⊆ R ∧ R is ground }.

Definition (certain answer)
certain(Q, (D,Σ)) =

⋂{Q(R) |R ∈ POSS(M) ∧M is a model of D ∪ Σ }
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Universal models

Definition (Models comparison)
Given two models M1 and M2 we say that M1 is at least as general as
M2 (M1 w M2) if ∃h such that h(M1) ⊆ M2.
M1 is more general than M2 (M1 = M2) if M1 w M2 and M2 6w M1.

Theorem
M1 w M2 iff POSS(M1) ⊇ POSS(M2),
M1 ⊆ M2 ⇒ M1 w M2.
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Universal models

Definition (Universal model)
M is an universal model (or universal solution) if for every model N,
M w N (i.e. ∃h s.t . h(M) ⊆ N).

Theorem (Main Th.)
For every UCQ Q and for every arbitrary universal model M of D ∪ Σ

certain(Q, (D,Σ)) = certain(Q,M) = certain(Q(M))

Recall that:

certain(Q, (D,Σ) =
⋂
{Q(R) |R ∈ POSS(M) ∧M is a model of D∪Σ }

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 102 / 184



Universal models

Definition (Universal model)
M is an universal model (or universal solution) if for every model N,
M w N (i.e. ∃h s.t . h(M) ⊆ N).

Theorem (Main Th.)
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Universal models
Example (Models and answers)

Database: D = {person(john)}
Data dependencies Σ:

∀X person(X )→ ∃Z fatherOf (Z ,X )
∀X ∀Y fatherOf (X ,Y ),person(Y )→ person(X )

Models (under OWA):

M1 = {person(john), fatherOf (john, john)}
M2 = {person(john), fatherOf (⊥1, john),person(⊥1)}
M3 = {person(john), fatherOf (⊥2, john),person(⊥2)}
M4 = {person(john), fatherOf (⊥1, john),person(frank)}
...

M2 = M1, M2 = M4, M2 w M3, M3 = M1, M3 = M4, M3 w M2
M2 and M3 are universal models.
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The Chase

Fixpoint algorithm designed to enforce satisfaction of dependencies.

The execution of the chase involves
adding new facts (possibly with null values) to satisfy TGDs,
replacing nulls (with constants or other null values) to satisfy
EGDs.
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The Chase

Several problems can be solved using the chase algorithm:
Checking query containment under dependencies
Checking implication of dependencies
Checking lossless decomposition of database schema
Computing universal solutions in data exchange
Computing certain answers in data integration
Ontology Querying
Database repair
...
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The Chase
Chase algorithm chase(D,Σ)

Iteratively, let K be the current instance (K = D at step 0),
select nondeterministically a constraint r ∈ Σ and an
homomorphism h such that K 6|= h(r) (i.e. K |= body(h(r)) and
there is no estension h′ of h such that K |= head(h′(r))).
enforce the satisfaction of h(r) by either i) adding a tuple (if r is a
TGD), or ii) replacing a null value (if r is an EGD), or ”fail” (if r is an
EGD which cannot be enforced).

A chase step from K1 and r1 with homomorphism h to K2 is denoted as
K1→r1,h1K2.

The result of chase(D,Σ) is nondeterministic and is either
a (possibly infinite) universal model;
fail, if D ∪ Σ does not have universal models.
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Chase - Enforcing data dependencies: a first example

Example

D : Σ :

N(a) N(X )→ ∃Y E(X ,Y )
S(a) S(X ) ∧ E(X ,Y )→ N(Y )

chase(D,Σ) = {N(a),S(a)

All TGDs are satisfied: STOP.

This and every other chase sequence terminates.
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Chase – Terminating Sequence

Example (∃ a finite sequence)

D : Σ :

airport(a) r1 : airport(X )→ ∃Y flight(X ,Y )
r2 : flight(X ,Y )→ airport(X ) ∧ airport(Y )
r3 : flight(X ,Y )→ flight(Y ,X )

The following facts are added to D :

flight(a,⊥1)
airport(⊥1)
flight(⊥1,a)

No further rule is applicable: STOP.
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Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :
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By iteratively applying r1 and r2 the chase never terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 117 / 184



Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X )→ ∃Y flight(X ,Y )
r2 : flight(X ,Y )→ airport(X ) ∧ airport(Y )
r3 : flight(X ,Y )→ flight(Y ,X )

The following facts are added to D :
flight(a,⊥1)
airport(⊥1)

flight(⊥1,⊥2)
airport(⊥2)

...

By iteratively applying r1 and r2 the chase never terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 117 / 184



Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X )→ ∃Y flight(X ,Y )
r2 : flight(X ,Y )→ airport(X ) ∧ airport(Y )
r3 : flight(X ,Y )→ flight(Y ,X )

The following facts are added to D :
flight(a,⊥1)
airport(⊥1)

flight(⊥1,⊥2)
airport(⊥2)

...

By iteratively applying r1 and r2 the chase never terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 117 / 184



Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X )→ ∃Y flight(X ,Y )
r2 : flight(X ,Y )→ airport(X ) ∧ airport(Y )
r3 : flight(X ,Y )→ flight(Y ,X )

The following facts are added to D :
flight(a,⊥1)
airport(⊥1)
flight(⊥1,⊥2)

airport(⊥2)
...

By iteratively applying r1 and r2 the chase never terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 117 / 184



Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X )→ ∃Y flight(X ,Y )
r2 : flight(X ,Y )→ airport(X ) ∧ airport(Y )
r3 : flight(X ,Y )→ flight(Y ,X )

The following facts are added to D :
flight(a,⊥1)
airport(⊥1)
flight(⊥1,⊥2)

airport(⊥2)
...

By iteratively applying r1 and r2 the chase never terminates.

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 117 / 184



Chase – Non-terminating Sequence

Example (∃ an infinite sequence)

D : Σ :

airport(a) r1 : airport(X )→ ∃Y flight(X ,Y )
r2 : flight(X ,Y )→ airport(X ) ∧ airport(Y )
r3 : flight(X ,Y )→ flight(Y ,X )

The following facts are added to D :
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Chase Termination

Checking whether there is at least one terminating chase
sequence vs. all chase sequences are terminating;
for a given instance D vs. for every instance.
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Chase Termination

Theorem
Consider a set Σ of TGDs:

It is undecidable whether, for every instance D, some chase
sequence of D with Σ terminates [GO13].
It is undecidable whether, for every instance D, all chase
sequences of D with Σ terminate [GM14].
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Chase Termination

Theorem ([DNR08])
Given a set Σ of TGDs and a (fixed) instance D:

It is undecidable whether some chase sequence of D with Σ
terminates.
It is undecidable whether all chase sequences of D with Σ
terminate.
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Sufficient Conditions

One Solution: Identify sufficient conditions guaranteeing chase
termination.

Many have been proposed:

Weak Acyclicity [FKMP05]
Stratification [DNR08] and C-Stratification [MSL09]
Safety and Inductive Restriction [MSL09]
Super-weak Acyclicity [Mar09]
Local Stratification [GST11, GST15]
Adornment Techniques [GS10, GST15]
Model-Faithful Acyclicity [GHK+13]
Acyclic Graph Rule Dependencies [BLMS11]

From now on we consider only TGDs
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Chase Variants
Oblivious and Semi-oblivious

The set of dependencies is skolemized.
The resulting logic program is evaluated.
The oblivious and semi-oblivious chases adopt two different
skolemizations.

Example

r : N(X ,Y )→ ∃K ,Z E(X ,K ,Z )

Oblivious Chase. Skolemization:

N(X ,Y )→ E(X , f K
r (X ,Y ), f Z

r (X ,Y ))

Semi-oblivious Chase. Skolemization:

N(X ,Y )→ E(X , f K
r (X ), f Z

r (X ))
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Chase Variants

Example (Complex terms represent nulls)

D : Σ :
E(a,b) E(X ,Y )→ ∃Z E(X ,Z )

Standard Semi-oblivious Oblivious

E(X ,Y )→ E(X , f (X )) E(X ,Y )→ E(X , f (X ,Y ))

No chase step E(a,b) E(a,b)
(D |= Σ) E(a, f (a)) E(a, f (a,b))

E(a, f (a, f (a,b)))
STOP (fixpoint) E(a, f (a, f (a, f (a,b))))

...
NO Termination

(no fixpoint)
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E(X ,Y )→ E(X , f (X )) E(X ,Y )→ E(X , f (X ,Y ))

No chase step E(a,b) E(a,b)
(D |= Σ) E(a,⊥1) E(a,⊥2)

E(a,⊥3)
STOP (fixpoint) E(a,⊥4)

...
NO Termination

(no fixpoint)
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Chase Variants

Core Chase [DNR08]
Minimal universal models.

Core chase step:
1 Enforce all dependencies “in parallel”.
2 “Retract” the result (homomorphism h : M → M).

Theorem (Completeness of the Core Chase [DNR08])
If D is an instance and Σ is a set of TGDs. then there exists a universal
model for Σ and I iff the core chase of I with Σ terminates and yields
such a model.
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Chase Variants

CTc
∀: class of sets of TGDs Σ s.t., for every instance, all c-chase

sequences terminate.
CTc
∃: class of of sets of TGDs Σ s.t., for every instance, at least

one c-chase sequence terminates.

Theorem ([Mei10, One13] For TGDs only)

CTobl
∀ =CTobl

∃ ( CTsobl
∀ =CTsobl

∃ ( CTstd
∀ (CTstd

∃ ( CTcore
∀ =CTcore

∃
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Function Symbols vs. TGDs

Termination Criteria for programs with function symbols can be applied
to TGDs:

Step 1. Skolemize TGDs.

Example

r : p(X ,Y )→ ∃K ,Z q(X ,K ,Z )

sk(r) : p(X ,Y )→ q(X , f K
r (X ), f Z

r (X ))

Step 2. Apply termination criteria to skolemized TGDs.

Given a set Σ of TGDs, let sk(Σ) = {sk(r) | r ∈ Σ}.

Termination of the bottom-up evaluation of sk(Σ) (i.e., the
semi-oblivious chase)⇒ Termination of the chase of Σ [One13].
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Function Symbols vs. TGDs

Example

r : p(X ,Y )→ ∃Zp(X ,Z )

Step 1. Skolemize r :

sk(r) : p(X ,Y )→ p(X , f Z
r (X ))

We get a logic program with function symbols.

Step 2. Analyze sk(r) by applying a termination criterion.
E.g., sk(r) is argument-restricted.
Thus, the bottom-up evaluation of sk(r) always terminates.
That is, the semi-oblivious chase of r always terminates.
Thus, the standard chase of r always terminates.
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Function Symbols vs. TGDs

Limitations: Recall that:

Theorem ([Mei10, One13])

CTsobl
∀ =CTsobl

∃ ( CTstd
∀ (CTstd

∃

Function Symbols vs. TGDs

Example

⌃ sk(⌃)

r : p(X , Y )! 9Zq(X , Z ) sk(r) : p(X , Y )! q(X , f Z
r (Z ))

Limitations: Remember that:

Theorem (??)

CTsobl
8 =CTsobl

9 ( CTstd
8 (CTstd

9

Example

CTsobl
8 =CTsobl

9 ( CTstd
8 (CTstd

9
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Function Symbols vs. TGDs

What about applying criteria for TGDs to programs with function
symbols?

The latter are more general than skolemized TGDs.

Each function symbol occurs:

Skolemized TGDs Programs with function symbols
once arbitrary number of times

only in the head in the body and/or head
no nesting arbitrary nesting
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Termination Criteria
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Weak Acyclicity [FKMP05] [standard chase]

Dependency Graph
Nodes are predicate arguments.

Two kinds of edges:
1 normal edges represent the propagation of values between arguments;
2 special edges→∗ represent the generation of nulls.

Example

Σ =
N(X )→ ∃Y E(X ,Y )
E(X ,Y )→ N(Y )

N1 
E2 

E1 
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Weak Acyclicity [FKMP05] [standard chase]

Dependency Graph dep(Σ)

Nodes are predicate arguments.

Two kinds of edges:
1 normal edges represent the propagation of values between arguments;
2 special edges→∗ represent the generation of nulls.

Example

Σ =
N(X )→ ∃Y E(X ,Y )
E(X ,Y )→ N(Y )

N1 
E2 

E1 
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Weak Acyclicity [FKMP05] [standard chase]

Dependency Graph
Nodes are predicate arguments.

Two kinds of edges:
1 normal edges represent the propagation of values between arguments;
2 special edges→∗ represent the generation of nulls.

Example

Σ =
N(X )→ ∃Y E(X ,Y )
E(X ,Y )→ N(Y )

N1 
E2 

E1 

* 
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Weak Acyclicity [FKMP05] [standard chase]

Definition
A set of dependencies is weakly acyclic if there is no cycle going
through a special edge in the dependency graph.

Theorem
If Σ is weakly acyclic, then for every instance I, every chase
sequence terminates (and has a polynomial length in the size of I).
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Safety [MSL09] [standard chase]

Affected Positions aff (Σ) [CGK13]
Overestimation of positions that may contain null values.

Propagation Graph prop(Σ)

Restriction of the dependency graph containing only affected positions.

Example

Σ =
r1 : N(X )→ ∃Y E(X ,Y )
r2 : S(Y ) ∧ E(X ,Y )→ N(Y )

N1 
E2 

E1 

* 

S1 
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Safety [MSL09] [standard chase]
Affected Positions aff (Σ)

Overestimation of positions that may contain null values.

Propagation Graph prop(Σ)

Restriction of the dependency graph containing only affected positions.

Example

Σ =
r1 : N(X )→ ∃Y E(X ,Y )
r2 : S(Y ) ∧ E(X ,Y )→ N(Y )

N1 
E2 

E1 

* 

S1 

aff (Σ) = {E2}
prop(Σ) = ({E2}, ∅)
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Safety [MSL09] [standard chase]

Affected Positions aff (Σ)

Overestimation of positions that may contain null values.

Propagation Graph prop(Σ)

Restriction of dependency graph containing only affected positions.

Safety
A set of dependencies is safe if the propagation graph does not contain cycles
with special edges.

Theorem
If Σ is safe, then for every instance I, every chase sequence terminates (and has a
polynomial length in the size of I).
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Stratification [DNR08] [standard chase]

Chase Graph G(Σ)

It represents how dependencies fire each other.

Nodes: the dependencies in Σ.

Edges: there is an edge from r1 to r2 (r1 ≺ r2) if r1 may “fire” r2.

Example

Σ =
r1 : N(X )→ ∃Y E(X ,Y )
r2 : S(Y ) ∧ E(X ,Y )→ N(Y )

there exists a scenario where firing r2 causes r1 to fire (r2 ≺ r1).

r1 6≺ r2, r1 6≺ r1 and r2 6≺ r2.

The chase graph is acyclic and Σ is stratified.
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Stratification [DNR08] [standard chase]

Stratification
A set of dependencies is stratified if every cycle in the chase graph G(Σ) is weakly
acyclic.

Theorem
If Σ is stratified then, for every instance I, there exists at least one chase sequence
that terminates (and whose length is polynomial in the size of I).
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C-Stratification [MSL09] vs Stratification

A variation called c-stratification guarantees the termination of
every chase sequence.
Same approach of stratification, but the oblivious chase is used.

C-Stratification
r1 ≺c r2 if:
1) K1 →∗,r1,h1K2 (oblivious step),
2) K2 6|= h2(r2),
3) K1 |= h2(r2).

Stratification
r1 ≺ r2 if:
1) K1→r1,h1K2 (standard step),
2) K2 6|= h2(r2),
3) K1 |= h2(r2).

Theorem
If Σ is c-stratified then, for every instance I, all chase sequences terminate and their
length is polynomial in the size of I).

For any Σ, G(Σ) ⊆ Gc(Σ) ⇒ Str ⊇ CStr
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Inductive Restriction [MSL09] [oblivious chase]

It improves the firing relation by considering possible propagation of null
values.

It tests safety on the (nontrivial) strongly connected components of the
graph.

It generalizes both safety and c-stratification.

Theorem
If Σ is inductively restricted, then for every instance I, every chase sequence
terminates (and has a polynomial length in the size of I).
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Super-weak Acyclicity [Mar09] [semi-obliv. chase]

Builds a trigger graph whose edges define relations among dependencies. An
edge ri  rj means that a null value introduced by a dependency ri is
propagated (directly or indirectly) into the body of rj .

Different nulls in positions for the same variable⇒ dependencies are not fired

Example
r1 : N(X )→ ∃Y ,Z E(X ,Y ,Z )
r2 : E(X ,Y ,Z )→ G(X ,Y ,Z )
r3 : G(X ,Y ,Y )→ N(Y )

Σ neither safe not stratified.

P(Σ) =

 r ′1 : N(X )→ E(X , f
r1
Y(X ), f

r1
Z (X ))

r ′2 : E(X ,Y ,Z )→ ∃Y ,Z G(X ,Y ,Z )
r ′3 : G(X ,Y ,Y )→ N(Y )
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Super-weak Acyclicity [Mar09]

Super-weak Acyclicity
A set of dependencies is super-weak acyclic if the trigger relation is
acyclic.

Theorem
If Σ is super-weak acyclic, then for every instance I, every chase
sequence terminates (and has a polynomial length in the size of I).
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Relative Expressivity

WA: Weak Acylicity
SC: Safety
CStr : C-stratification
IR: Inductive Restriction
SwA: Super-weak Acylicity
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Limitations

Example

r1 : N(X )→ ∃ Y ∃Z E(X ,Y ) ∧ S(Z ,Y )
r2 : E(X ,Y ) ∧ S(X ,Y )→ N(Y )
r3 : E(X ,Y )→ E(Y ,X )

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 147 / 184



Improvements of (C-)Stratification

Builds a firing graph Γ(Σ) = (Σ,E) representing how constraints fire each other.

(r1, r2) ∈ E if r1 < r2 (firing r1 can cause r2 to fire)

r1 < r2 if:

1) K1 →
r1,h1 K2,

2) K2 ∪ S 6|= h2(r2),

3) K1 ∪ S |= h2(r2) and

4) Null(S) ∩ (Null(K2)− Null(K1)) = ∅.

r1 ≺ r2 if:

1) K1 →r1,h1 K2,

2) K2 6|= h2(r2),

3) K1 |= h2(r2).

As r1 could cause the firing of r2 not immediately, S is a set of atoms which could have been
inferred after the firing of r1.
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Improvements of (C-)Stratification

Example

Σ =
r1 : R(x)→ ∃y T (x , y)
r2 : R(x)→ T (x , x)
r3 : T (x , y) ∧ T (x , x)→ R(y)

K1 = {R(a)} and K2 = {R(a),T (a,⊥1)}
S = {T (a, a)}
r3 : T (a,⊥1) ∧ T (a, a)→ R(⊥1)

r3 is fired by r1, then we have r1 < r3

Local Stratification
WA-Str (resp. SC-Str , SwA-Str ) tests WA (resp. SC, SwA) over components of Γ(Σ)

Local Stratification (LC) combines SwA with Γ(Σ): in analyzing how nulls may be
propagated from a rule ri to a rule rj , also checks whether ri < rj transitively.
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Criteria Relationships
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Rewriting Techniques
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Constraints Rewriting Technique [GST15]

Idea
Rewrite Σ into an ‘equivalent’ adorned set Σα and verify the
structural properties for chase termination on Σα (similarly to LPs)
Rewrite Σ into a set of dependencies useful to analyze the
structure of terms during the execution.
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Rewriting Algorithm [GST15]

Example
Σ :

r1 : N(X )→ ∃Y E(X ,Y )
r2 : S(X ) ∧ E(X ,Y )→ N(Y )

Adn(Σ):

s1 : N(X ) → Nb(X )
s2 : S(X ) → Sb(X )
s3 : E(X ,Y ) → Ebb(X ,Y )

r ′1 : Nb(X ) → ∃Y Ebf1 (X ,Y ) f1 = f Y
r1

(b)
r ′2 : Sb(X ) ∧ Ebb(X ,Y ) → Nb(Y )

r ′′2 : Sb(X ) ∧ Ebf1 (X ,Y ) → N f1 (Y )
r ′′1 : N f1 (X ) → ∃Y E f1f2 (X ,Y ) f2 = f Y

r1
(f1)
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Model-Faithful Acyclicity (MFA) [GHK+13]

Example
Σ :

r : A(X )→ ∃Y ,Z R(X ,Y ) ∧ B(Z )

MFA(Σ) :

A(X )→ ∃Y ,Z R(X ,Y ) ∧ B(Z ) ∧
F Y

r (Y ) ∧ F Z
r (Z ) ∧ S(X ,Y ) ∧ S(X ,Z )

S(X1,X2) → D(X1,X2)
D(X1,X2) ∧ S(X2,X3) → D(X1,X3)

F Y
r (X1) ∧ D(X1,X2) ∧ F Y

r (X2) → C
F Z

r (X1) ∧ D(X1,X2) ∧ F Z
r (X2) → C

If I ∪MFA(Σ) |= C then a cyclic term is derived during the
semi-oblivious chase execution of I and Σ.
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Model-Faithful Acyclicity (MFA) [GHK+13]
Definition
Σ is MFA w.r.t. an instance I if I ∪MFA(Σ) 6|= C.

Definition
The critical instance IΣ for Σ is the instance containing all facts that can be built using:

all predicates in Σ,

all constants in the body of a dependency in Σ, and

one special fresh constant ∗.

Theorem ([Mar09])
The semi-oblivious chase of Σ and I terminates for every I iff the semi-oblivious chase
of Σ and IΣ terminates.

Theorem
If Σ is MFA w.r.t. IΣ, then for every instance I, every (semi-oblivious) chase
sequence terminates.
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Related Approaches

So far we have discussed sufficient conditions ensuring chase
termination.
Other lines of research:

Identify restricted classes of dependencies for which the
termination problem is decidable [CGP15].
Identify restricted classes of dependencies guaranteeing
decidability of query answering (even if the chase does not
terminate).

I Guarded and Weakly Guarded Datalog± [CGK13]
I Sticky Datalog± [CGP10]
I Forward and Backward chaining [BLMS11]
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Adding EGDs
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EGDs – Syntax

An Equality-Generating Dependency is of the form:

∀X ϕ(X )→ X1 = X2

where ϕ(X ) is a conjunction of atoms and X1,X2 ∈ X .

Example
∀M1,M2,P directs(M1,P) ∧ directs(M2,P)→ M1 = M2
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EGDs and Chase Termination

1 In some cases the presence of EGDs allows us to have a
terminating c-chase sequence when the set consisting only of the
TGDs does not have one;

2 In some cases in the presence of EGDs there is no terminating
c-chase sequence, but the set consisting only of the TGDs does
have one.
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Chase and EGDs

Adding EGDs leads to termination

Example (No EGDs)

D : Σ :

N(a) N(X )→ ∃Y E(X ,Y )
E(X ,Y )→ N(Y )

chase(D,Σ) = {N(a), E(a,⊥1), N(⊥1), E(⊥1,⊥2), . . .

There is no terminating chase sequence.
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Chase and EGDs
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Adding an EGD to Σ ...

Example (TGDs + EGDs)
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E(X ,Y )→ N(Y )
E(X ,Y )→ X = Y

chase(D,Σ) = {N(a), E(a,a)}

No further dependency is applicable: STOP.
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Chase and EGDs
Adding EGDs→ No termination

Adding an EGD to Σ ...

Example (TGDs + EGDs)

D : Σ :

N(a) N(X )→ ∃Y ∃Z E(X ,Y ,Z )
E(X ,Y ,Y )→ N(Y )
E(X ,Y ,Z )→ Y = Z

chase(D,Σ) = {N(a), E(a,⊥1,⊥1), N(⊥1), E(⊥1,⊥2,⊥2), . . .

No termination
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Relationship between CTc
∀ and CTc

∃

For TGDs only:

CTobl
∀ = CTobl

∃ ⊂ CTsobl
∀ = CTsobl

∃ ⊂ CTstd
∀ ⊂ CTstd

∃ ⊂ CTcore
∀ = CTcore

∃

Known techniques can (and some actually do!) consider the class CTc
∀

for a simpler chase (e.g., oblivious).

Then, membership in CTstd
∀ , CTstd

∃ , CTcore
∀ , and CTcore

∃ is implied.

Question: Does this still hold for TGDs+EGDs?

CTobl
∀ ⊂ CTobl

∃ ∦ CTsobl
∀ ⊂ CTsobl

∃ ∦ CTstd
∀ ⊂CTstd

∃ ⊂CTcore
∀ =CTcore

∃

CTobl
∀ ⊂CTsobl

∀ ⊂CTstd
∀ ⊂CTcore

∀

CTobl
∃ ⊂CTsobl

∃ ⊂CTstd
∃ ⊂CTcore

∃
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Termination Criteria and EGDs

Many techniques are valid for TGDs only;

But they can be applied by simulating EGDs with TGDs:

I Natural Simulation [Gottlob et al., PODS06];
I Substitution-free simulation [Marnette, PODS09].

However, the behaviour of EGDs cannot be fully simulated via
TGDs...

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 173 / 184



Termination Criteria and EGDs

Many techniques are valid for TGDs only;

But they can be applied by simulating EGDs with TGDs:

I Natural Simulation [Gottlob et al., PODS06];
I Substitution-free simulation [Marnette, PODS09].

However, the behaviour of EGDs cannot be fully simulated via
TGDs...

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 173 / 184



Termination Criteria and EGDs

Many techniques are valid for TGDs only;

But they can be applied by simulating EGDs with TGDs:

I Natural Simulation [Gottlob et al., PODS06];
I Substitution-free simulation [Marnette, PODS09].

However, the behaviour of EGDs cannot be fully simulated via
TGDs...

S. Greco and C. Molinaro Termination Analysis of Logic Programs July 25th, 2015 173 / 184



EGDs Simulation

Example
Σ :

r1 : A(x) ∧ B(x) → C(x)
r2 : C(x) → ∃y A(x) ∧ B(y)
r3 : C(x) → ∃y A(y) ∧ B(x)
r4 : A(x) ∧ A(y) → x = y
r5 : B(x) ∧ B(y) → x = y

Every chase sequence is terminating, for any variation of the chase.

However, both the natural and the substitution-free simulations of Σ
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EGDs Simulation
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Function Symbols vs. EGDs
Step 1. Replace EGDs with TGDs via Substitution-free simulation
[Mar09].
Step 2. Proceed as with TGDs.

Recall that:

Example

Terminating

p(X ) ∧ q(X )→ r(X )
r(X )→ ∃Y p(X ) ∧ q(Y )
r(X )→ ∃Y p(Y ) ∧ q(X )
p(X ) ∧ p(Y )→ X = Y
q(X ) ∧ q(Y )→ X = Y

Non− Terminating

p(X ) ∧ q(X2) ∧ eq(X ,X2)→ r(X )
r(X )→ ∃Y p(X ) ∧ q(Y )
r(X )→ ∃Y p(Y ) ∧ q(X )
p(X ) ∧ p(Y )→ eq(X ,Y )
q(X ) ∧ q(Y )→ eq(X ,Y )

eq(X ,Y )→ eq(Y ,X )
eq(X ,Y ) ∧ eq(Y ,Z )→ eq(X ,Z )
p(X )→ eq(X ,X )
q(X )→ eq(X ,X )
r(X )→ eq(X ,X )
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Dealing with EGDs

Example
D = {N(a)}, Σ :

N(x) → ∃y E(x , y)
E(x , y) → N(y)
E(x , y) → x = y

N(a)→ E(a, )

→ a =⊥1 → all constraints satisfied!
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Rewriting TGDs and EGDs

Example

r1 : N(x) → ∃y E(x , y)
r2 : E(x , y) → N(y)
r3 : E(x , y) → x = y

r ′3 : Ebb(x , y) → x = y
r ′2 : Ebb(x , y) → Nb(y)

r ′1 : Nb(x) → ∃y Eb(x , y)

r ′′3 : Eb(x , y) → x = y

No cyclic symbol fi occurs in the constraints above.
Thus, there exists a terminating standard chase sequence.
In this sequence, EGDs are applied as soon as possible.
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Results

The rewriting algorithm always terminates;

Σα ∈ CTstd
∃ implies Σ ∈ CTstd

∃ ;

Furthermore, if 6 ∃ cyclic fi in Σα, then Σ ∈ CTstd
∃ ;
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Current and Future directions

Determine decidable classes of data dependencies,
Consider and extended framework (Datalog[∃,=,F ,¬]),
Define criteria guaranteing termination of one chase sequence,
Determine how to compute one of the terminating sequences,
Further exploiting of EGDs
Complexity (not discussed here)
Support for design tools.
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Thanks!

Questions?
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