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Clustering XML documents is extensively used to organize large collections of XML
documents in groups that are coherent according to structure and/or content features.
The growing availability of distributed XML sources and the variety of high-demand
environments raise the need for clustering approaches that can exploit distributed
processing techniques. Nevertheless, existing methods for clustering XML documents
are designed to work in a centralized way. In this paper, we address the problem of
clustering XML documents in a collaborative distributed framework. XML documents are
first decomposed based on semantically cohesive subtrees, then modeled as transactional
data that embed both XML structure and content information. The proposed clustering
framework employs a centroid-based partitional clustering method that has been developed
for a peer-to-peer network. Each peer in the network is allowed to compute a local
clustering solution over its own data, and to exchange its cluster representatives with
other peers. The exchanged representatives are used to compute representatives for the
global clustering solution in a collaborative way. We evaluated effectiveness and efficiency
of our approach on real XML document collections varying the number of peers. Results
have shown that major advantages with respect to the corresponding centralized clustering
setting are obtained in terms of runtime behavior, although clustering solutions can still
be accurate with a moderately low number of nodes in the network. Moreover, the
collaborativeness characteristic of our approach has revealed to be a convenient feature
in distributed clustering as found in a comparative evaluation with a distributed non-
collaborative clustering method.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The clustering problem is central in data management as it refers to unsupervised learning of the inherent structure
of relationships in the data. The discovered relationships are expressed as a set of groups, or clusters, where data objects
within the same cluster are similar to each other while dissimilar from objects in different clusters.

Text databases represent a fruitful research area in data clustering. With the growing availability of large document col-
lections, there has been an increasing demand for fast and accurate organization of such data. In the last years, research on
document clustering has focused on the development of approaches and methods that aim to address the special require-
ments for clustering large document collections, such as high dimensionality, ease for browsing, meaningfulness of cluster
descriptions [26,36,12,30,21]. Moreover, text data available from most informative sources, primarily over the Web but also
in digital libraries and scientific repositories, has a semistructured nature. As the connection point between the natural
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language text and the rigidly structured tuples of typed data, semistructured text data enables the modeling of complex
real-world objects and their relationships.

Within this view, XML has become the preeminent way for effectively representing such data, thanks to its extensible
markups and document type descriptors. As a meta-language for markup, XML allows the definition of customized tags
describing the data enclosed by them. This flexibility in the XML syntax simplifies the deployment of arbitrary languages
for domain-specific markup: just to mention a few domain applications, XML has been used in Web content syndication
and rendering, multimedia and networking, scientific data and literature, business processes and data exchange.

Particularly, the importance of XML is becoming more and more evident in high-demand environments, in which clus-
tering large document sets is challenging as it has to face tight requirements on both processing power and space resources.
One example is represented by some Web news services that need to apply clustering algorithms to articles in XML format
spanning over thousands of news sources with a frequency of few minutes. In this case, a distributed clustering approach
would divide the capability of processing over several nodes as opposed to concentrating performance on a single work-
station, where traditional centralized approaches would fail since transferring all data to a central clustering service is
prohibitive in large-scale systems. In the case of news articles, the objective of a clustering system would be most likely
to discover groups of articles discussing similar contents, regardless of their structures. Actually, many other real scenarios
are even more complicated since XML documents from heterogeneous sources are typically organized using different logical
structures, and this also holds for sources that may have similar contents. As an example, consider users in a peer-to-peer
network who want to share information about software encoded in XML format, such as software name, developers’ name,
latest release date, platform, license, reviews and ratings. All such structural fields would be encoded using the markup vo-
cabulary authored by any specific source, and contents might be interleaved with structure in different ways. For instance,
using a text-centric representation approach, an XML document might contain the full descriptions of the various reviews,
including ratings, in repeated occurrences of the element review. By contrast, using a data-centric representation approach,
a different XML document may follow a more complex substructure rooted in the element reviews which would include a
number of sub-elements containing a short description for each of selected aspects relevant to the review (e.g., positive and
negative comments, rating, recommendation). In such a scenario, the partial matchings between different structures (and
their combinations with text values) could be identified based on an XML similarity detection approach properly devised for
taking into account heterogeneous structure as well content information. This way, users would be allowed to easily access
an integrated and more complete information, hence to extract interesting knowledge patterns.

The scenario described above is just one among the many existing in XML distributed applications, which range from sci-
entific literature and data to personal profiles, from book or music reviews to product documentations. As a matter of fact,
XML is being extensively used in peer-to-peer (P2P) networks [19,1,28,5], due to the natural combination of a standard way
for representing and exchanging information with a technology for sharing and locating distributed data which has proven
to enable innovative services [29]. However, despite this synergistic coupling of XML and P2P networks, existing methods
for clustering XML data are designed to work only on a centralized environment. This partly depends on an inherent diffi-
culty in devising representation models of both XML structure and content information that are able to effectively support
summarization of XML data, thus favoring the development of clustering methods that maintain feasibility in large-scale
systems. Moreover, most clustering strategies cannot easily be distributed, since there is an additional level of complexity
due to the design and implementation of scalable and effective protocols for communication that allow nodes to minimize
exchanged data. In this respect, a related issue concerns the type and the form of the information that need to be selected
and exchanged among the nodes, which impacts on the significance of the obtained clustering solutions.

1.1. Contribution

Our proposal is focused on the development of a distributed framework for efficiently clustering XML documents. As-
suming the distributed environment as a P2P network, the underlying idea is to enable each node in the network to access
a portion of a given document collection and to communicate with all the other nodes to perform a clustering task in a
collaborative fashion. To the best of our knowledge, we bring for the first time the problem of collaborative distributed
clustering in the XML data domain.

The proposed framework borrows the approach to modeling and clustering XML documents from our earlier works
[33,32]. Following the lead of these works, XML documents are transformed into transactional data based on the notion of
tree tuple. XML tree tuples enable a flat, relational-like XML representation that is well suited to meet the requirements for
clustering XML documents according to structure and content information.

We resort to the well-known paradigm of centroid-based partitional clustering [17] to conceive our distributed, trans-
actional clustering framework. It should be emphasized that such a clustering paradigm is particularly appealing to a
distributed environment. Indeed, the availability of a summarized description of the clustered data provided by the cluster
representatives is highly desirable especially when the input data is spread across different peers. Cluster representatives
are hence used to describe portions of the document collection and can conveniently be exchanged with other nodes on
the network.

Fig. 1 provides an overview of our collaborative distributed clustering framework. A number of XML information sources
is spread over a P2P network (Fig. 1(a)). Each node in the network has its own local XML repository and communicates
with the other nodes sending and receiving summarized information about the local clustering process (i.e., cluster repre-
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Fig. 1. Overview of the collaborative distributed clustering of XML documents: (a) an example XML distributed environment as a P2P network, and (b) a
schematization of data flows in a single node of the network.

sentatives). Fig. 1(b) shows the main processes involved in each single node. A preprocessing phase produces a transactional
representation of the local XML documents based on tree tuples. At each iteration of the collaborative algorithm, each node
yields a local clustering solution (i.e., a partition of its own set of XML data). For each local cluster, the corresponding
(local) representative is obtained and sent out to nodes that are in charge of computing the “global” representatives. More
precisely, every node computes a subset of the global representatives; the i-th node computing the global representative for
a set of clusters, receives from each other node the representative for the corresponding local cluster. Once computed, the
global representatives are finally sent back to all the nodes to update their local clusters.

Major features and advantages offered by our approach can be summarized as follows:

• High level of resource distribution — our approach is totally distributed since both data and (clustering) processes are
distributed over several nodes.

• Collaborativeness — as typical in a P2P network, whose main strength is its independence of dedicate infrastructure and
centralized control [29], collaborativeness leads to a distributed environment that presents several advantages mainly
in terms of: reliability (no centralized index server needs to be maintained), resource sharing (i.e., every node locally
shares its resources and administrates its client-server environment), efficiency and effectiveness (i.e., processing power
increases as demands increase, and transmission rate is higher than a client-server network since resources can be
made available from multiple nodes connected to each other as peers).

• Limited network load — our notion of XML cluster representative is well suited for representing structure and content
information in XML data, and ensures an efficient exchange of information.

• Ease of implementation — the logics adopted by every node for processing the information exchanged with other nodes
is simple. This allows an easy implementation of the processes performed by nodes: indeed, through the definition
of global representatives, this logics exploits the repeated application of a procedure very similar to that used for
summarizing information exchanged among the nodes (local representatives).

We conducted experiments on large, real-world collections of XML documents, which are particularly suitable for as-
sessing the ability of the proposed framework in performing collaborative clustering of XML documents by structure and
content. Documents in each of these collections were distributed over a P2P network, where the number of peers was
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varied. Results have shown that, although the final clustering accuracy is typically reduced with respect to the centralized
case, the parallelism due to a relatively small number of collaborating nodes in the network leads to a drastic reduction
of the overall runtime needed for the clustering task. Besides this major strength with respect to a centralized clustering
solution, further experiments have unveiled a remarkable beneficial impact of the collaborativeness feature of our approach
compared to a non-collaborative distributed clustering method.

1.2. Plan of the paper

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3 provides preliminaries for
XML transactional representation, including the notions of tree tuple and transaction for the XML data domain. Section 4
describes our XML transactional similarity measure and collaborative clustering algorithm. Section 5 reports experimen-
tal evaluation on the framework from both effectiveness and efficiency viewpoint. Finally, Section 6 presents concluding
remarks and pointers for future research.

2. Related work

Distributed XML data management has received an increasing attention in the last few years. As usual in emerging
database applications, early proposals have been developed in order to primarily enact efficient distributed query processing
and optimization. In [2], the Active XML (AXML) language, a logical language based on the embedding of service calls
within XML documents, is extended to enable the declarative specification and deployment of XML applications across
distributed complex processes. In [5], the distribution of XML documents across a P2P network is exploited to speed-up
query processing. In contrast to related research studies (e.g., [28]), a clustering-based distribution scheme is designed to
ensure a more homogeneous assignment of documents to peers, according to the clusters identified in the set of stored
XML documents.

The attractiveness of publishing information sources in XML for organizations that want to easily interoperate has also
fed an increasing interest in developing solutions for collaborative creation and editing of XML documents. For instance,
in [16], an approach for the reconciliation of XML documents in a decentralized P2P environment is presented. In such
environment, users can work off-line on their document versions and, as they reconnect to the network, synchronize their
changes with other users. Consistency over the concurrent edits on XML documents is maintained by merging XML struc-
tures using a tombstone operational transformation based approach.

As previously mentioned, current methods for clustering XML documents are designed to offer centralized solutions. In
this respect, a first problem arises in the definition of an XML representation model that is able to effectively handle both
structure and content information in XML data. Representing semistructured and XML data has been traditionally addressed
by labeled rooted trees. Consequently, dealing with such data has leveraged results from research on tree matching, includ-
ing a number of algorithms for computing tree edit distances (e.g., [25]). However, due to complexity issues, edit distance
based approaches are infeasible for large data collections. To overcome these issues, summarization models have been pro-
posed in order to (i) concisely represent XML data while preserving some structural relationships between XML elements,
and (ii) fast compute XML similarity thus making it efficient in case of large-scaled XML documents [4,24,23,9,27]. In [23],
an efficient graph-based summarization model, called s-graph, defines a concise XML representation that can be generalized
to sets (clusters) of XML documents; however, the s-graph model may incur loose-grained similarity, as two documents
may share the same s-graph prototype and still have significant structural differences (e.g., hierarchical relationships be-
tween elements). For instance, in [24], a compact structure is introduced to summarize the distinct nodes at each level
of an XML document, and a notion of structural match between elements is defined according to the level information of
each tree object. Like [24], the summarized structure proposed in [4] is organized as a vector of levels as well, although it
considers the distinct edges at each level of an XML document. Moreover, it is also able to preserve the structural relation-
ships between nodes of consecutive levels in the form of edge lists, which is in principle useful for distinguishing between
semantically/structurally different XML documents.

A different category is provided by subtree mining and matching algorithms [3,20]. Such algorithms exploit a tree
representation of XML documents, however they compute XML similarity in terms of coverage of frequent substructures
(e.g., subtrees, paths) at a specified support level, instead of calculating the tree edit distance between any pair of XML
documents. The complexity of algorithms that belong to this category lies on the complexity of mining the frequent sub-
structures, which might turn out to be inefficient in case of large XML document sets.

The development of vector-space models to represent XML data has also attracted great attention, especially in XML
information retrieval contexts [34,13,35,8]. In [35], feature generation concerns properties on the paths, such as the path
length, the root node label, and the number of path nodes. In [8], XML documents are transformed into sets of attribute-
values according to various tree relationships among the document nodes, such as parent–child and next-sibling relation-
ships, and path occurrences. In [13], both the XML element names and their text content values texts are taken into account
to form two distinct feature sets. XML documents are then represented based on their bag-of-words and/or their bag-of-
tags, and different clustering strategies based on the K -means algorithm are evaluated. Another hybrid clustering algorithm
is proposed in [34], where the content features are modeled as a vector of terms weighted by their frequency within docu-
ments, and the structural features are modeled as a vector of distinct complete paths weighted by their appearance within
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documents. The Euclidean distance is used to compute the dissimilarity between the corresponding vector representations
of the XML documents.

In our earlier works [33,32], we originally introduced an XML representation model that allows for mapping XML doc-
ument trees into transactional data. In a generic application domain, a transaction dataset is a multi-set of variable-length
sequences of objects with categorical attributes; in the XML domain, we devise a transaction as a set of items, each of
which embeds a distinct combination of structure and content features from the original XML data. Within this view, XML
documents are not directly transformed to transactional data, rather they are initially decomposed on the basis of the notion
of tree tuple. Intuitively, given any XML document, a tree tuple is a tree representation of a complete set of distinct concepts
that are correlated according to the structure semantics of the original document tree. Tree tuples extracted from the same
tree maintain similar or identical structure while reflect different ways of associating content with structure as they can be
naturally inferred from the original tree.

Traditional clustering techniques assume data is memory-resident. However, this assumption does not hold in many
large-scale systems. In this respect, the development of clustering methods in parallel and distributed environments is
becoming important since clustering and, in general, data mining tasks often require huge amounts of resources in storage
space and computation time. Moreover, data is often inherently distributed into several databases, making a centralized
analysis of such data inefficient and prone to security risks.

Among the few proposals to parallelize the clustering process in generic data domains [22], a parallel implementation
of the K -means clustering algorithm is defined in [11], where a multi-processor architecture is assumed based on the
message passing paradigm. Each processor has its own local memory, while the access to the other processes’ memory is
ensured by exploiting a standardized Message Passing Interface (MPI) library. The dataset is partitioned into equal-sized
blocks among the processes. After selecting k objects as initial cluster representatives, each process carries out the basic
K -means procedure to cluster its local objects. At the end of each iteration, processes exchange and sum up the local Sum
of Squared-Errors (SSEs) to obtain the global SSE and compute new cluster representatives. The algorithm stops when the
global SSE does not change in the next iteration.

One of the earliest studies on distributed data mining is proposed in [18], where an agent-based architecture is defined
in such a way that each agent has a local model of the world and agents cooperate to improve solutions. The problem of
document clustering in a distributed peer-to-peer network has been addressed recently. For instance, in [14], the significance
of centroid-based partitional clustering like K -means is leveraged as an efficient approach to distributed clustering of docu-
ments. In [15], the authors originally propose a collaborative approach to distributed clustering of unstructured documents.
The key idea underlying that work is to improve the local clustering solutions by exploiting the distributed environment
on the basis of recommendations exchanged by the various peers. Also, document cluster summaries are modeled in form
of key-phrases. Our work shares with [15] the adoption of a collaborative approach to distributed document clustering.
However, our work is significantly different in that:

• XML documents are far more complex than structure-free texts, since the property of being content-bearing belongs to
textual elements that are interleaved with (and contextually dependent on) logical structure tags; this requires a data
representation model capable of embedding both structure and content information.

• XML cluster summarization needs to go beyond the relative simple extraction of representative key-phrases that belong
to plain documents within each cluster; our XML cluster summaries are defined as cluster representative transactions,
which are conceived to contain highly representative items of structure and content information present in the within-
cluster XML document set.

• XML information exchanged among peers is not supplied in the form of recommendations, but in a simpler way that
exploits the definition of “meta-representatives” for the computation of the global clustering solution.

3. Modeling XML structure and content information

3.1. Preliminaries on XML trees and paths

A tree T is a tuple T = 〈rT , NT , ET , λT 〉, where NT ⊆ N denotes the set of nodes, rT ∈ NT is the distinguished root of
T , ET ⊆ NT × NT denotes the (acyclic) set of edges, and λT : NT �→ Σ is a function associating a node with a label in the
alphabet Σ . Let Tag, Att, and Str be alphabets of tag names, attribute names, and strings respectively. An XML tree X T is a
pair X T = 〈T , δ〉, such that: (i) T is a tree defined on the alphabet Σ = Tag ∪ Att ∪ {S}, where symbol S /∈ Tag ∪ Att is used
to denote the #PCDATA content model; (ii) given n ∈ NT , λT (n) ∈ Att ∪ {S} ⇔ n ∈ Leaves(T ); (iii) δ : Leaves(T ) �→ Str is a
function associating a string to a leaf node of T .

An XML path p is a sequence p = s1.s2. . . . .sm of symbols in Tag ∪ Att ∪ {S}. Symbol s1 denotes the tag name of the
document root element. An XML path can be categorized into two types: tag path, if sm ∈ Tag, or complete path, if sm ∈
Att ∪ {S}. We denote by P X T the set of all the complete paths in X T and by T P X T the set of all the maximal tag paths in
X T , i.e., T P X T = {s1. . . . .sm−1 | s1. . . . .sm−1.sm ∈ P X T }. The length of the longest path in P X T determines the depth of X T ,
denoted as depth(X T ).

Let X T = 〈T , δ〉 be an XML tree, and p = s1.s2. . . . .sm be an XML path. The application of p to X T identifies the set
p(X T ) = {n1, . . . ,nh} of all nodes such that, for each i ∈ [1..h], there exists a sequence of nodes, or node path, npp =
i



S. Greco et al. / Journal of Computer and System Sciences 77 (2011) 988–1008 993
[ni1 , . . . ,nim ] with the following properties: ni1 = rT and nim = ni ; ni j+1 is a child of ni j , for each j ∈ [1..m − 1]; and,
λ(ni j ) = s j , for each j ∈ [1..m].

The application of a given path to an XML tree is called answer. Formally, given an XML tree X T and a path p, the
answer of p on X T is defined as either A X T (p) ≡ p(X T ) (i.e., the set of node identifiers p(X T )) if p is a tag path, or
A X T (p) = {δ(n) | n ∈ p(X T )} (i.e., the set of string values associated to the leaf nodes identified by p) if p is a complete
path.

3.2. XML tree tuples

Tree tuple resembles the notion of tuple in relational databases and has been proposed to extend functional dependen-
cies to the XML setting [6]. In a relational database, a tuple is a function assigning each attribute with a value from the
corresponding domain. Given an XML tree X T , a maximal subtree of X T is an XML tree tuple τ if the answer of each (tag or
complete) path p in X T on τ has size not greater than 1, i.e., |Aτ (p)| � 1.

We hereinafter denote the set of tree tuples from any given tree X T as T X T , and the set of tree tuples from the tree
collection X T simply as T . Also, following the notation introduced in Section 3.1, we use Pτ to denote the set of all the
complete paths in a tree tuple τ .

Example 1. Fig. 2(a) shows a simplified XML document (from the DBLP archive) concerning two conference papers. Such a
document is graphically represented by the XML tree in Fig. 2(b). In the tree, any internal node has a unique label denoting
a tag name. Each leaf node corresponds to either an attribute or #PCDATA content, and is labeled with either name and
value of the attribute, or symbol S and the string corresponding to #PCDATA. As examples of path answers, (tag) path
dblp.inproceedings.title yields the set of node identifiers {n8,n20}, whereas (complete) path dblp.inproceedings.author.S yields the
set of strings {‘M.J. Zaki’, ‘C.C. Aggarwal’}.

As shown in Fig. 3, three tree tuples can be extracted from the tree of Fig. 2(b). One tree tuple is from the right subtree
rooted in the dblp element (Fig. 3(c)). Two distinct tree tuples are extracted from the left subtree rooted in dblp, as in this
subtree there are two paths dblp.inproceedings.author, each of which yields a distinct path answer corresponding to one author
of a paper. Suppose now that node n3 is pruned from the subtree of Fig. 3(a): in this case, the resulting tree is no more a
tree tuple as it is not a maximal subtree.

3.3. A transactional model for XML tree tuples

In the generic categorical domain, a transactional dataset is a multi-set of transactions over a set of categorical values, or
items. In our XML setting, the item set is built over all the leaf elements in a given collection of XML tree tuples, hence it
corresponds to the set of answers of complete paths applied to the tree tuples. A transaction is then modeled with the set
of items associated to the leaf elements of any specific tree tuple. Formally, given an XML tree tuple τ , the XML transaction
corresponding to τ is the set Iτ = {〈p, Aτ (p)〉 | p ∈ Pτ }, where each pair 〈p, Aτ (p)〉 is referred to as an XML tree tuple
item. The rationale behind this model is that each path applied to a tree tuple yields a unique answer, thus each item in
a transaction indicates information on a concept that is distinct from that of other items in the same transaction. We also
denote with S the XML transaction set for a given collection X T of XML trees, which is defined as S = ⋃

X T ∈X T S X T , where
S X T = {Iτ | τ ∈ T X T }.

Example 2. In order to model XML tree tuples as transactions, we can decompose each tree tuple into its distinct paths
and respective answers, as shown in Fig. 4(a). For example, in τ1, the application of path dblp.inproceedings.@key yields the
attribute value ‘conf/kdd/ZakiA03’ corresponding to node n3. Then, item e1 is associated to the above pair path-answer. Yet,
the answer of path dblp.inproceedings.booktitle.S is the string ‘KDD’ corresponding to two nodes, n13 of tree tuples τ1 and τ2,
and n25 of tree tuple τ3.

Once the item domain has been completely defined, a transaction is assigned with each tree tuple by mapping its pairs
path-answer into the corresponding items. A transactional representation of the tree tuples of Fig. 3 is shown in Fig. 4(c).
Notice that, in the example, all the transactions contain the same number of tree tuple items, as their corresponding tree
tuples have the same number of leaf nodes. Clearly, transactions might be differently sized, depending on the specific
structure of the associated tree tuples.

4. Clustering distributed XML transactions

In this section, we describe how XML tree tuples modeled as transactions can be compared to each other and clustered
by applying a centroid-based partitional algorithm suitably designed for a collaborative environment.
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Fig. 2. Example DBLP XML document and its tree.

4.1. XML tree tuple item similarity

XML transactions are compared according to both their structure and content features, by computing the similarity
between their respective tree tuple items. Given two tree tuple items ei and e j , the tree tuple item similarity is computed by
the function:

sim(ei, e j) = f × simS(ei, e j) + (1 − f ) × simC (ei, e j), (1)
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Fig. 3. The tree tuples extracted from the XML tree of Fig. 2(b).

path (p) Aτ1 (p) node ID

dblp.inproceedings.@key ‘conf/kdd/ZakiA03’ n3

dblp.inproceedings.author.S ‘M.J. Zaki’ n5

dblp.inproceedings.title.S ‘XRules: an effective . . . ’ n9

dblp.inproceedings.year.S ‘2003’ n11

dblp.inproceedings.booktitle.S ‘KDD’ n13

dblp.inproceedings.pages.S ‘316–325’ n15

path (p) Aτ2 (p) node ID

dblp.inproceedings.@key ‘conf/kdd/ZakiA03’ n3

dblp.inproceedings.author.S ‘C.C. Aggarwal’ n7

dblp.inproceedings.title.S ‘XRules: an effective . . . ’ n9

dblp.inproceedings.year.S ‘2003’ n11

dblp.inproceedings.booktitle.S ‘KDD’ n13

dblp.inproceedings.pages.S ‘316–325’ n15

path (p) Aτ3 (p) node ID

dblp.inproceedings.@key ‘conf/kdd/Zaki02’ n17

dblp.inproceedings.author.S ‘M.J. Zaki’ n19

dblp.inproceedings.title.S ‘Efficiently mining . . . ’ n21

dblp.inproceedings.year.S ‘2002’ n23

dblp.inproceedings.booktitle.S ‘KDD’ n25

dblp.inproceedings.pages.S ‘71–80’ n27

(a)

item ID associated
node IDs

e1 n3

e2 n5, n19

e3 n9

e4 n11

e5 n13, n25

e6 n15

e7 n7

e8 n17

e9 n21

e10 n23

e11 n27

(b)

tr1 e1 e2 e3 e4 e5 e6

tr2 e1 e7 e3 e4 e5 e6

tr3 e8 e2 e9 e10 e5 e11

(c)

Fig. 4. Transactional representation of the tree tuples of Fig. 3: (a) paths and answers, (b) item domain, and (c) transaction set.

where simS (resp. simC ) denotes the structural (resp. content) similarity between the items, and f ∈ [0,1] is a factor that
tunes the influence of the structural part to the overall similarity.

Moreover, two XML tree tuple items ei and e j are said to be γ -matched if

sim(ei, e j) � γ (2)

where γ ∈ [0,1] is a similarity threshold introduced to set the minimum degree of matching of the combinations of struc-
ture and content features embedded in the two tree tuple items.

4.1.1. Similarity by structure
Structural similarity between two tree tuple items ei and e j is evaluated by comparing their respective tag paths.
Computing the similarity between any two paths is essentially accomplished by referring to it as a simple case of string

matching of their respective element names, and finally averaging the (weighted) matchings. To this end, given any two
tags t and t′ , the Dirichlet function (�) is applied in such a way that �(t, t′) is equal to one if the tags match, otherwise
�(t, t′) is equal to zero.
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Given two XML tree tuple items ei and e j , let pi = ti1 .ti2 . . . . .tin and p j = t j1 .t j2 . . . . .t jm be their respective tag paths.
The structural similarity between ei and e j is defined as

simS(ei, e j) = 1

n + m

(
n∑

h=1

s(tih , p j,h) +
m∑

k=1

s(t jk , pi,k)

)
(3)

such that, for each tag t and path p = t1.t2. . . . .tL , s(t, p,a) = maxl=1..L(1 + |a − l|)−1 × �(t, tl).
Above, the tag matchings are corrected by a factor which is inversely proportional to the absolute difference of location

of the tags in their respective paths. Essentially, this factor penalizes the similarity of two paths that have the same tags
but are differently located.

It should also be noted that information on structural similarity could be semantically enriched with the support of a
knowledge base, like in our previous works; however, in this work, we deliberately intended to consider only syntactic sim-
ilarity aspects to concentrate on the clustering phase and on the investigation of the benefits deriving from a collaborative
distributed approach. Therefore, we leave this point as a future development of the proposed framework.

4.1.2. Similarity by content
We refer to a textual content unit (for short, TCU) as the preprocessed text1 of a tree tuple item, i.e., a #PCDATA ele-

ment content or an attribute value. To weight the relevance of terms in TCUs, we defined a function which represents an
adaptation of the popular tf .idf (term frequency – inverse document frequency) to our XML transactional domain.

Given a collection X T of XML trees, let w j be an index term occurring in a TCU ui of a tree tuple τ ∈ T extracted from
a tree X T ∈ X T . The ttf .itf (Tree tuple Term Frequency – Inverse Tree tuple Frequency) weight of w j in ui with respect to τ is
defined as

ttf .itf (w j, ui |τ ) = tf (w j, ui) × exp

(
n j,τ

Nτ

)
× n j,X T

N X T
× ln

(
NT

n j,T

)

where tf (w j, ui) denotes the number of occurrences of w j in ui , and the other symbols denote the number of TCUs
appearing in τ (Nτ ) and in the portion containing w j (n j,τ ), in X T (N X T ) and in the portion containing w j (n j,X T ), in T
(NT ) and in the portion containing w j (n j,T ). Note that, the ttf .itf weight increases by increasing each of the factors in the
function, i.e., the term frequency within the specific TCU, the term popularity across the TCUs of the same XML transaction
and across the TCUs of the same document tree, and the term rarity across the whole collection of TCUs.

Content similarity between two tree tuple items is computed by measuring the text similarity of their respective TCUs.
We adopt a vector-space model to represent the TCUs, therefore any TCU ui is modeled with a vector 
ui whose j-th
component corresponds to an index term w j and contains the ttf .itf relevance weight. The size of TCU vectors is equal to
the size of the vocabulary V , i.e., the set of index terms extracted from all TCUs in the collection T of tree tuples. Clearly,
from a point of view of data structure implementation, proper structures can be exploited to drastically reduce the actual
dimensionality of each TCU vector, since TCU vectors are typically sparse. To measure the similarity between TCU vectors,
the well-known cosine similarity [31] is used.

4.2. The CXK-means clustering algorithm

XML tree tuples modeled as transactions are efficiently clustered by carrying out a partitional algorithm devised for
the XML transactional domain. Generally, given a set of objects and a positive number k, a partitional clustering algorithm
identifies k non-empty, disjoint groups each containing a homogeneous subset of objects. An important class of partitional
approaches is based on the notion of representative, or centroid, of cluster: each object is assigned to a cluster C according
to its distance from a specific data point c, which is the representative of C .

In [33,32], we developed a centroid-based partitional clustering algorithm, which is essentially a variant of the K -means
algorithm for the XML transactional domain. From clustering strategy viewpoint, this algorithm works as a traditional
centroid-based method to compute k + 1 clusters: starts choosing k objects as the initial cluster representatives, then iter-
atively reassigns each remaining object to the closest cluster until all cluster representatives do not change. The (k + 1)-th
cluster, called trash cluster, is created to contain unclustered objects.

Two major aspects in the XML transactional clustering algorithm are (i) the notion of proximity used to compare XML
transactions and (ii) the notion of cluster representative.

In generic transactional domains, a widely used proximity measure is the Jaccard coefficient, which determines the
degree of matching between any two transactions as directly proportional to their intersection (i.e., number of common
items) and inversely proportional to their union. However, computing exact intersection between XML transactions is not
effective, since XML tree tuple items may share structural or content information to a certain degree even though they are
not identical. For this purpose, the notion of standard intersection between sets of items is enhanced to capture non-exact

1 Text preprocessing is usually accomplished by means of language-specific operations such as lexical analysis, removal of stopwords and word stem-
ming [7].
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Global Input:
A set S of XML transactions distributed over m nodes;
The desired number k of clusters; A similarity threshold γ .

Global Output:
A partition C of S in k clusters distributed over m nodes.

Process N0

Method:
define a partition of {1, . . . ,k} into m subsets Z1, . . . , Zm;
send ({Z1, . . . , Zm},k, γ ) to Ni , ∀i ∈ [1..m];

Process Ni

Input:
A set S i ⊂ S of XML transactions.

Output:
A partition C i = {C i

1, . . . , C i
k} of S i into k clusters.

Method:
receive ({Z1, . . . , Zm},k, γ ) from N0;
let Zi = { j1, . . . , jqi }, with 0 � qi � k,

∑m
i=1 qi = k;

/* select qi initial global clusters */
select {tr1, . . . , trqi } from S i coming from distinct original trees;
let g js = trs , ∀s ∈ [1..qi ];
C i

j = {};
repeat

send (broadcast) {g j | j ∈ Zi} to N1, . . . , Nm;
receive {g j | j ∈ Zh} from Nh ;
repeat /* transaction relocation */

C i
k+1 = {tr ∈ Si | simγ

J (tr, g j) = 0}; {Eq. (4)}
for each j ∈ [1..k] do

C i
j = {tr ∈ Si \ C i

k+1 | simγ
J (tr, g j) � simγ

J (tr, gt )}, ∀t ∈ [1..k]}; {Eq. (4)}

�i
j = ComputeLocalRepresentative(C i

j);
end for

until no transaction is relocated;
if no �i

j changes then
send (broadcast) ({}, V i = done);

else
send ({(�i

j , |C i
j |) | j ∈ Zi′ }, V i = continue) to all other Ni′ , i′ �= i;

receive ({(�h
j , |Ch

j |) | j ∈ Zi}, V i′ ) from all other Ni′ , i′ �= i;
if (∃h ∈ [1..m] s.t. Vh = continue) then

g j = ComputeGlobalRepresentative({(�1
j , |C1

j |), . . . , (�m
j , |Cm

j |)});
until V 1 = · · · = Vm = done;

Fig. 5. The CXK-means algorithm.

similarities in structure and content XML features. Let us now introduce our notion of enhanced intersection between XML
transactions.

Given two XML transactions tr1, tr2, and a similarity threshold γ ∈ [0,1], the set of γ -shared items between tr1 and tr2
is defined as

matchγ (tr1, tr2) = matchγ (tr1 → tr2) ∪ matchγ (tr2 → tr1),

where

matchγ (tri → tr j) = {
e ∈ tri

∣∣ ∃eh ∈ tr j, sim(e, eh) � γ , �e′ ∈ tri, sim
(
e′, eh

)
> sim(e, eh)

}
.

The set of γ -shared items hence resembles the intersection between transactions at a degree greater than or equal to a
similarity threshold γ . Being defined this notion of enhanced intersection, we define the XML transaction similarity function
between tr1 and tr2 as

simγ
J (tr1, tr2) = |matchγ (tr1, tr2)|

|tr1 ∪ tr2| . (4)

We now present our proposed XML transactional clustering algorithm for a collaborative distributed environment, called
CXK-means. Fig. 5 sketches the main phases of the algorithm, and Fig. 6 shows the main functions involved in the algorithm
execution. Major characteristics of CXK-means are described in the following.

The input set S of all XML transactions is distributed over m nodes. Each node stores a local subset S i and commu-
nicates with all the other nodes sending “local” representatives and receiving “global” representatives. An initial process
corresponding to a node N0 defines a partition of the set {1, . . . ,k} of cluster identifiers into m subsets Z j, j ∈ [1..m]. Each



998 S. Greco et al. / Journal of Computer and System Sciences 77 (2011) 988–1008
Function ComputeLocalRepresentative(C) : rep;
IC = {e | e ∈ tr ∧ tr ∈ C};
PC = {〈p,h〉 | ∃h items (p, u) ∈ IC };
for each e ∈ IC do

rankS (e) = sum{h | ∃e′ = (p′, u′) ∈ IC ∧ 〈p′,h〉 ∈ PC ∧ simS (e, e′) � γ }/|PC |;
rankC (e) = sume′∈IC {(
u · 
u′)/(‖
u‖ × ‖
u′‖)}, where 
u and 
u′ are the TCU vectors
of e and e′ , respectively;
rank(e) = f × rankS (e) + (1 − f ) × rankC (e); {Eq. (1)}

end for
let IC be the list containing the elements in IC ordered by rank values;
return GenerateTreeTuple(IC , C);

Function ComputeGlobalRepresentative(T ) : rep;
Given any set X = {(x1

1, x2
1), . . . , (x1

S , x2
S )} of pairs,

let X[q] be the projection {xq
1, . . . , xq

S } of X , with q ∈ {1,2};
let T = {ti , . . . , tm}, where ti = (tri , wi), i ∈ [1..m];
IT = {(e, w) | ∃(tr, w) ∈ T ∧ e ∈ tr ∧ w = sum{w ′ | (tr′, w ′) ∈ T ∧ e ∈ tr′}};
P T = {〈p,h〉 | ∃h items (p, u) ∈ IT [1]};
for each e s.t. (e, w) ∈ IT do

g_rankS (e) = sum{h | ∃e′ = (p′, u′) ∈ IT [1] ∧ 〈p′,h〉 ∈ P T ∧ simS (e, e′) � γ }/|P T |;
g_rankC (e) = sume′∈IC {(
u · 
u′)/(‖
u‖ × ‖
u′‖)}, where 
u and 
u′ are the TCU
vectors of e and e′ , respectively;
g_rank(e) = w × ( f × g_rankS (e) + (1 − f ) × g_rankC (e)); {Eq. (1)}

end for;
let I T [1] be the list containing the elements in IT [1] ordered by g_rank values;
return GenerateTreeTuple(I T [1], T [1]);

Function GenerateTreeTuple(IC , C) : rep;
let |trmax| be the maximum length of transaction within C ;
rep′ = ∅; s′ = 0;
repeat

let I∗C ⊆ IC be the set of items in IC with the highest rank;
rep = rep′; s = s′;
rep′ = conflateItems(rep ∪ I∗C );
s′ = sumtr∈C {simγ

J (tr, rep′)}; {Eq. (4)}
IC = IC \ I∗C ;

until (IC = ∅ ∨ |rep| > |trmax| ∨ s′ < s)
return rep;

Fig. 6. Functions employed by the CXK-means algorithm.

set Z j contains the identifiers of the clusters for which the node N j has the responsibility of computing the global rep-
resentatives. It should be noted that the presence of node N0 does not contrast the collaborative nature of the proposed
CXK-means. Indeed, N0 is not responsible of summarizing the information coming from the various peers N1, . . . , Nm and,
therefore, does not act as a coordinator; rather, N0 performs only trivial startup operations which, in principle, can be
performed by any peer.

Each node Ni (i ∈ [1..m]) is in charge of computing local clusters C i
1, . . . , C i

k and local representatives �i
1, . . . , �

i
k , but also

a subset {g j | j ∈ Zi} of the global representatives (using the local representatives computed by all nodes). Each node has a
process that executes a classical K -means-like partitional clustering scheme on its local data in S i . The clustering process
employs global representatives received from each other node in the network and terminates when transaction assignments
to local clusters do not change.

For each node Ni , the local representative of a cluster C i
j (function ComputeLocalRepresentative) is computed by starting

from the set of γ -shared items among all the transactions within C i
j . More precisely, for each transaction in C i

j , the union

of the γ -shared item sets with respect to all the other transactions in C i
j is obtained; this guarantees no dependence of

the order of examination of the transactions. Then, the set of γ -shared items is involved into function GenerateTreeTuple
to compute a representative having the form of a tree tuple. According to such a function, a raw representative is firstly
defined by selecting the items from these union sets with the highest frequency: the raw representative, however, may
not have the form of a tree tuple, as some items therein may refer to the same path but with different answers. Any raw
representative is transformed into a tree tuple by conflateItems procedure. This procedure is applied to a set I of items and
yields a tree tuple composed by all the distinct paths p involved into the items in I; the content associated to each path
p is the union of the contents of the items in I having p as a path. A greedy heuristic refines the current representative
by iteratively adding the remaining most frequent items until the sum of pairwise similarities between transactions and
representative cannot be further maximized. By involving again conflateItems procedure, any refinement ensures that the
resulting representative is actually a tree tuple.

The global representative g j of a cluster C j (function ComputeGlobalRepresentative) is computed in a way similar to
that employed for local representatives. A major difference is that global representatives exploit the m local representatives
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�1
j , . . . , �

m
j along with their respective weights |C1

j |, . . . , |Cm
j |, in order to take also into account the size of the clusters

summarized by each node. The rationale is that the greater is the weight |C i
j | (i.e., the greater the number of transac-

tions belonging to the cluster C j stored into the local repository S i at node i), the greater is the information in the local
representative �i

j in summarizing cluster C j .
Nodes communicate their local state by sending a flag to other nodes in the network. In particular, a node sends a

termination signal (i.e., “done”) if, at the end of its local clustering process, all its local cluster representatives do not change
with respect to the ones computed in the previous execution. In this way, the collaborative clustering process continues
until each node Ni in the network reaches a stable clustering solution (i.e., each flag V i′ is “done”, ∀i′ ∈ [1..m]).

4.3. Complexity

In the following, we discuss the computational complexity of the proposed CXK-means, by analyzing the costs of the
(i) similarity functions exploited by the algorithm, (ii) main memory operations, and (iii) communications among nodes. We
conclude this section by providing a comparison between centralized and distributed cases, paying special attention to the
impact of the network size and the dataset size on efficiency improvements.

4.3.1. Complexity of similarity functions
The cost of the various similarity functions exploited by CXK-means are summarized in the following.

• The cost Ce
S of evaluating function simS (Eq. (3)), which computes the structural similarity between any two items

ei = 〈pi, ui〉 and e j = 〈p j, u j〉, is as follows. It is bounded by O(|pi | × |p j | × C�), where |pi | and |p j | are the lengths
of paths pi and p j , respectively, and C� is the cost of computing the Dirichlet function between any two tags. Since
the lengths of paths pi and p j are bounded by depth(X T ), i.e., the depth of the XML tree X T from which the input
transactions are extracted (cf. Section 3.1), it results that Ce

S = O((depth(X T ))2 × C�) = O((depth(X T ))2), since C� can
be reasonably assumed to be a constant.

• Evaluating content similarity between any two items ei and e j by means of function simC consists in performing cosine
similarity between TCU vectors 
ui and 
u j of ei and e j , respectively; this cost, denoted as Ce

C , is linear with respect to
the dimensionalities |
ui | and |
u j | of vectors 
ui and 
u j , respectively, i.e., Ce

C = O(|
ui | + |
u j |). More generally, this cost is
bounded by the maximum TCU size |umax| over all the input transactions, i.e., it holds that Ce

C = O(|umax|). This bound
depends on the content of the TCUs either initially contained within the input transactions or generated during the
computation of representatives. Clearly, |umax| is O(|V |), where |V | denotes the size of the vocabulary (cf. Section 4.1),
but in practice it holds that |umax| � |V |.

• The cost Ce = Ce
S + Ce

C of computing function sim (Eq. (1)) is bounded by O(|umax| + (depth(X T ))2) = O(|umax|), as it
typically holds that depth(X T ) � |umax|.

• The cost Cγ of computing function simγ
J between transactions tr1 and tr2 (Eq. (4)) depends on the set of γ -shared items

between tr1 and tr2. This is computed by evaluating the similarity between each pair ei ∈ tr1, e j ∈ tr2 of items according
to function sim; thus, it is bounded by O(|tr1|× |tr2|× Ce) = O(|trmax|2 ×|umax|), where |trmax| is the maximum length
of a transaction in S .

4.3.2. Complexity of main memory operations
We analyze in the following the complexity of the main memory operations performed by CXK-means algorithm in each

node Ni , i ∈ [1..m]. Clearly, the global complexity depends on the number of iterations performed; however, this number is
usually a small constant (in our experiments, for instance, it was always smaller than 10). To this end, our focus here is on
the study of the complexity of a single iteration.

Essentially, each iteration of CXK-means involves (i) a relocation phase, in which the transactions are assigned to the
closest local representative, and (ii) the computation of local and global representatives (ComputeLocalRepresentative and
ComputeGlobalRepresentative functions, respectively). The costs of such phases are summarized next.

• The relocation phase requires a comparison between each transaction within S i (i.e., the subset of transactions stored
into node Ni ) and each of the k global representatives by means of function simγ

J ; thus, the cost of such a phase is

bounded by O(k × |S i | × Cγ ) = O(k × |S i | × |trmax|2 × |umax|).
• In the ComputeLocalRepresentative function, two sub-phases can be distinguished: (a) computing item ranking, and (b)

generation of the tree tuple representatives:
– given any cluster C i

j ( j-th cluster in the i-th node), phase (a) requires the computation of structural and content
rankings. Structural ranking (rankS ) involves the computation of the structural similarity simS(ei, e j), ∀ei, e j ∈ IC i

j

(IC i
j

is the set containing the items belonging to all the transactions within C i
j ). The cost of this operation is

in principle bounded by O(|IC i
j
|2 × Ce

S ); however, as the input XML tree X T is fixed, one can pre-compute the

structural similarity between every pair of maximal tag paths of X T only once, and exploit these pairwise similar-
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ities for computing structural ranking. This leads to a reduced cost bounded by O(|T P X T |2 × Ce
S + |IC i

j
| × |PC i

j
|) =

O(|T P X T |2 × (depth(X T ))2 + |IC i
j
| × |T P X T |), where |PC i

j
| is O(|T P X T |) and T P X T denotes the set of maximal tag

paths in X T (cf. Section 3.1). As |IC i
j
| is O(|C i

j | × |trmax|) and |T P X T | can be reasonably assumed to be O(|trmax|),

the cost of structural ranking is bounded by O(|trmax|2 × (depth(X T ))2 + |C i
j | × |trmax|2). On the other hand, the

complexity of content ranking (rankC ) is O(|IC i
j
|2 × Ce

C ) = O(|C i
j |2 × |trmax|2 × |umax|). It can be noted that the cost

O(|IC i
j
| × log |IC i

j
|) = O(|C i

j | × |trmax| × log(|C i
j | × |trmax|)) for sorting the set IC i

j
is not considered as it is dominated

by the cost of content ranking;
– phase (b) is performed by the function GenerateTreeTuple, which consists of three main operations: (i) selecting the

items with the highest rank, which is bounded by O(|IC i
j
|) = O(|C i

j | × |trmax|), (ii) joining the TCUs of items having

the same path (conflateItems procedure), whose cost is bounded by O(|IC i
j
| × |umax|) = O(|C i

j | × |trmax| × |umax|), and

(iii) computing the sum of similarities between the current representative and all the transactions within the cluster,
whose cost is bounded O(|IC i

j
| × |C i

j | × Cγ ) = O(|trmax|3 × |C i
j |2 × |umax|).

As the costs of phase (a) are dominated by those of phase (b), the overall complexity of performing ComputeLocalRepre-
sentative function over a single cluster C i

j is O(|trmax|3 ×|C i
j |2 ×|umax|). Since this function is called for all k clusters, we

have a global cost of O(
∑k

j=1 |trmax|3 ×|C i
j |2 ×|umax|) = O(|trmax|3 ×|umax|×∑k

j=1 |C i
j |2) = O(|trmax|3 ×|umax|× |Si |2).

• The analysis of ComputeGlobalRepresentative function is similar to that carried out for local representatives. The only
difference is that, at each step, this function is performed over a set of m transactions (i.e., the local representatives com-
puted by all the m nodes), rather than a set of size |C i

j |. Hence, the cost of computing a single global representative by a

node Ni can be trivially obtained by replacing |C i
j | with m in the formula expressing the cost of computing local repre-

sentatives. Therefore, this cost is bounded by O(|trmax|3 ×m2 ×|umax|). Assuming that the responsibilities of computing
global representatives are uniformly distributed over the nodes, the number |Zi | = qi of global representatives computed
by node Ni is bounded by O(�k/m�). Therefore, the global cost by node Ni is bounded by O(k × m × |trmax|3 × |umax|).

In conclusion, we can state that the global complexity of the main memory operations performed by CXK-means in
each node Ni is equal to the sum of the complexities discussed above; therefore, it is O(|trmax|2 × |umax| × (|S i | × k +
(
∑k

j=1 |C i
j |2 + k × m) × |trmax|)). In this respect, it is reasonable to assume that |S i | � k, otherwise the clustering process

is trivial; this leads to |S i | × k �
∑k

j=1 |C i
j |2 and, therefore, to the following overall complexity of main memory operations

performed by CXK-means:

Cmem = O
(

|trmax|3 × |umax| ×
(

k∑
j=1

∣∣C i
j

∣∣2 + k × m

))

= O
(|trmax|3 × |umax| ×

(∣∣S i
∣∣2 + k × m

))
.

4.3.3. Complexity of communications
To analyze the cost of communications, we note that the cost of transferring a single transaction from any node to

another one is bounded by O(|trmax| × (|umax| + depth(X T ))) = O(|trmax| × |umax|). Indeed, any transaction has at most
|trmax| elements and any element is composed by a path having size at most equal to depth(X T ) and a |umax|-dimensional
TCU vector. Assuming again that the responsibilities of computing global representatives are uniformly distributed over the
nodes, we note that any node Ni sends out at each iteration of CXK-means:

• qi = �k/m� transactions (i.e., global representatives) to all other m − 1 nodes, with a cost of O((m − 1)/m ×k ×|trmax|×
|umax|);

• (m − 1)/m × k transactions (i.e., local representatives) to a single node, with a cost of O((m − 1)/m × k × |trmax| ×
|umax|). Indeed, any node Ni sends each local representative only to the node having the responsibility of computing
the corresponding global representative; the total number of local representatives sent by Ni is (m − 1)/m × k as we do
not have to consider the representatives of the clusters for which Ni is responsible for computing global representatives.

Analogously, each node Ni receives from all other nodes (m − 1)/m × k transactions (i.e., global representatives) at a cost of
O((m − 1)/m × k × |trmax| × |umax|), along with (m − 1)/m × k transactions (local representatives) at a cost of O((m − 1)/

m × k × |trmax| × |umax|). Therefore, we can state that the global complexity of communications by each node Ni is equal to

Ccomm = O
(

m − 1 × k × |trmax| × |umax|
)

.

m
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It should be noted that, although (m − 1)/m is obviously O(1), we report the fraction (m − 1)/m in the above formula
to highlight the differences between centralized and distributed cases; indeed, for the centralized case, m = 1 implies no
communications.

4.3.4. Distributed vs. centralized CXK-means
Once derived the complexity of main memory operations and communications by each node, we focus on the analysis

of time consumptions, distinguishing between the centralized (m = 1) and distributed (m > 1) cases. To this end, we denote
by tmem and tcomm the time needed to perform a single main memory operation and the time needed for a single commu-
nication between any pair of nodes, respectively. Thus, the time needed by each node for performing CXK-means is bounded
by O(Cmem × tmem + Ccomm × tcomm), i.e., O(|trmax|3 × |umax| × (

∑k
j=1 |C i

j |2 + k × m) × tmem + |trmax| × |umax| × k × (m − 1)/

m × tcomm) = O(|trmax|× |umax|× (|trmax|2 × (
∑k

j=1 |C i
j |2 +k ×m)× tmem +k × (m − 1)/m × tcomm)). As we can reasonably as-

sume that k×m is O(
∑k

j=1 |C i
j |2)—both k and m are usually much lower than |S i | = ∑k

j=1 |C i
j |—we can state that the global

time spent over all the m nodes is bounded by O(|trmax|×|umax|×(|trmax|2 ×m×(
∑k

j=1 |C i
j |2)×tmem +k×(m−1)×tcomm)).

To better comprehend this formula, two limit cases can be considered:

• Case 1: |C i
j | is O(|S i |/k) (i.e., clusters have roughly the same size), that is

∑k
j=1 |C i

j |2 is O(|S i |2/k) = O(|S|2/(k × m2)).

• Case 2: ∃ j such that |C i
j | = O(|S i |) (i.e., there exists a cluster containing most of the transactions), that is

∑k
j=1 |C i

j |2 is

O(|S i |2) = O(|S|2/m2).

Within this view, we can finally express the global time consumption by CXK-means as O( f (m)), where:

f (m) = |trmax| × |umax| ×
( |trmax|2 × |S|2 × tmem

h × m
+ k × tcomm × (m − 1)

)
where 1 � h � k takes into account the distribution of transactions over the various clusters. It can be easily noted that the
above function f (m) is a sum of a hyperbolic function and a linear function; thus, it has a global minimum located in:

m = |S|√
h

×
√

|trmax|2 × tmem

k × tcomm
.

This enables us to draw the following conclusions:

• The global minimum of function f (m) represents an upper-bound for the number m to guarantee efficiency improve-
ments with respect to the centralized case; this essentially means that distributing transactions over m nodes is in
general more convenient than having a single node storing the whole set of transactions until m becomes equal to the
global minimum of function f (m).

• While the upper-bound for m is not reached, it holds that the larger the number m of nodes, the larger the “efficiency
gain” of distributed CXK-means with respect to centralized CXK-means. In particular, the improvement of the efficiency
follows a hyperbolic trend: it is more evident for small m values, while decreasing as m approaches the upper-bound.

• The value of the upper-bound for m (i.e., the global minimum of function f (m)) is directly (resp. inversely) proportional
to the size |S| of the input dataset of transactions (resp. the parameter h ∈ [1..k] that takes into account the distribu-
tion of the cluster sizes). Thus, the larger the set and/or the smaller the distribution of transactions over the various
clusters, the larger the value of the upper-bound for m and, therefore, the greater the (maximum reachable) efficiency
improvements of the distributed case with respect to the centralized case.

5. Experimental evaluation

5.1. Experimental setting

We assessed the proposed framework in performing clustering according to structure, content, or both information.
We hereinafter refer to these kinds of solutions as structure-driven, content-driven, and structure/content-driven clustering,
respectively. The first two types of clustering concern the detection of groups of XML that are homogeneous by either
structure or content. The third type (i.e., structure/content-driven clustering) includes a variety of scenarios, ranging from
detecting common structures across different topics, or conversely, to identifying classes of tree tuples that both cover
common topics and belong to the same structural category.

The three types of clustering correspond to different settings of the parameters f and γ , which control the XML transac-
tion similarity function (cf. Eqs. (1)–(2)). We varied f within [0,1] with step 0.1, and γ within [0.5,1) with step 0.05—we
chose γ = 0.5 as the maximum tolerance threshold in computing similarities. Also, since the setting of f depends on
the clustering goal, we decided to partition the (discrete) interval [0,1] as follows: [0,0.3] for content-driven clustering,
[0.4,0.6] for structure/content-driven clustering, and [0.7,1] for structure-driven clustering.
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Network topology was characterized by the type and number of nodes. In particular, the architecture of each node was
composed by an Intel Itanium 2 64 bit 1400 MHz (dual core), 4 GB memory RAM and GigaBit network interface, running
Debian New Linux 4.0 64 bit. We performed experiments by varying the number of nodes from 1 to a maximum of 19;
note that a network size equal to 1 refers to centralized clustering, which represents the baseline case.

Data partitioning is a crucial aspect in distributed environments. For this reason, we considered two scenarios in our
experiments: the first consists in partitioning data in such a way that the entire set S is equally distributed over the m
nodes (i.e., |S i | = |S|/m, ∀i ∈ [1..m]); in the second scenario, a half of the nodes hold a portion of the data that is the half
of the one held by the remaining ones (i.e., there are m/2 nodes with 4|S|/3m transactions and other m/2 nodes with
2|S|/3m transactions).

5.2. Data description

We used four real word document collections for the evaluation. A short description for each of these datasets is given
next—further information, including the XML structures as DTDs, can be found in [33].

The DBLP collection is a subset of the popular DBLP digital bibliography on computer science.2 DBLP is comprised of
3000 documents which correspond to 5884 transactions and 8231 distinct items. It contains short text descriptions (e.g.,
author names, paper titles, conference names), and covers 4 main categories, namely “journal articles” (article), “conference
papers” (inproceedings), “books” (book), and “book chapters” (incollection). Six topical classes are instead identified, which are
“multimedia”, “logic programming”, “web and adaptive systems”, “knowledge based systems”, “software engineering”, and
“formal languages”. If both content and structure information are taken into account, 16 classes are identified.

The IEEE dataset is the IEEE collection version 2.2, which has been used as a benchmark in the INEX document mining
track 2008.3 IEEE consists of 4874 articles originally published in 23 different IEEE journals from 2002 to 2004. Documents
in this collection conform to a complex schema which includes front matter, back matter, section headings, text formatting
tags and mathematical formulas. For our experiments, stylistic and other non-logical markups were filtered out. In our
XML transactional domain, the IEEE collection has 211,909 transactions and 135,869 distinct items. Also, the number of leaf
nodes is 228,869, the maximum fan out is 43, and the average depth is about 5. In IEEE, the article journals determine
the categories that were used to partition the collection, which strictly follow the original INEX categorization. Precisely,
two structural categories correspond to “transactions” and “non-transactions” articles, whereas the classification by content
organizes the articles by the following 8 topic-classes: “computer”, “graphics”, “hardware”, “artificial intelligence”, “internet”,
“mobile”, “parallel”, and “security”. Moreover, 14 hybrid classes are identified according to these structural and content
classes.

The Shakespeare collection is a subset of Shakespeare 2.00,4 an archive of Shakespeare’s plays in XML format. Shakespeare
is comprised of seven (long) documents which correspond to the plays Henry the Sixth (Part 1, 2 and 3), Henry the Eighth,
Hamlet, Macbeth and Othello. All lines corresponding to the same speech in the original document were concatenated to
form a unique speech.line element. Three structural classes were identified according to the presence/absence of discrim-
inatory paths, namely personae.pgroup, act.prologue, and act.epilogue. Moreover, as found in [33], tree tuples were preferably
grouped into 5 classes for content-driven clustering, and into 12 classes for structure/content-driven clustering.

Finally, Wikipedia is a subset of 10,000 documents from the Wikipedia XML Corpus used in the INEX contest 2007 [10].
This collection contains very long articles, which are organized in 21 thematic categories, each corresponding to a Wikipedia
portal [10]. Analogously to IEEE, we removed non-logical markups from the documents. Due to the absence of evident or fre-
quent structural differences among the individual Wikipedia articles, we mainly used this set for content-driven clustering;
for purposes of clustering evaluation, we referred to a 21-class thematic organization [33].

5.3. Cluster validity measures

To assess the quality of clustering solutions for the datasets, we exploited the availability of reference classifications for
XML documents. The objective was to evaluate how well a clustering fits a predefined scheme of known classes (natural
clusters). For this purpose, we resorted to the well-known F-measure [21], which is defined as the harmonic mean of
values that express two notions from Information Retrieval, namely Precision and Recall. F-measure ranges within [0,1],
where higher values refer to better quality results. Since we perform tree tuple decomposition of XML documents and then
transactional modeling, the evaluation process takes into account the set S of XML transactions.

Given a set S = {tr1, . . . , trm} of XML transactions, let Γ = {Γ1, . . . ,ΓH } be the reference classification of the transactions
in S , and C = {C1, . . . , C K } be the output partition yielded by a clustering algorithm. Precision of cluster C j with respect to
class Γi is the fraction of the transactions in C j that has been correctly classified, whereas Recall of cluster C j with respect
to class Γi is the fraction of the objects in Γi that has been correctly classified. Formally,

Pij = |C j ∩ Γi|
|C j| , Rij = |C j ∩ Γi|

|Γi| , Fij = 2Pij Ri j

P i j + Rij
.

2 http://dblp.uni-trier.de/xml/.
3 http://www.inex.otago.ac.nz/documentcollection.asp.
4 http://metalab.unc.edu/bosak/xml/eg/shaks200.zip.
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In order to score the quality of C with respect to Γ by means of a single value, the overall F-measure F (C,Γ ) is computed
using the weighted sum of the maximum Fij score for each class Γi .

F (C,Γ ) = 1

|S|
H∑

i=1

|Γi| max
j∈[1..K ]

Fij.

5.4. Evaluation goals

As the problem of collaborative distributed clustering of XML documents is addressed for the first time in this work,
there is no strictly competing method to be compared to our CXK-means. For this purpose, our experimental evaluation was
mainly conceived to evaluate the performance of CXK-means with respect to the centralized case (which arises when the
number m of peer nodes is equal to one), as well as to a non-collaborative distributed approach, in terms of both efficiency
and effectiveness. In this respect, we identified the following main evaluation goals:

1. Efficiency: Evaluation of the runtime performance of CXK-means with respect to the centralized case, by varying the
number of nodes in the distributed environment (P2P network). According to the study on the computational complexity
reported in Section 4.3, it is expected that, as the number of nodes increases, the computation time required in each
node decreases, but also the network traffic (i.e., exchange of cluster representatives) increases. This behavior leads to
the identification of a certain number of nodes that acts as a “saturation point”, meaning that further increasing the
number of nodes does not guarantee any significant efficiency gain; within this view, a major objective is to evaluate
the saturation (stabilization) point in every executed test. Note also that such a saturation point should in principle be
close to the global minimum of function f (m) discussed in Section 4.3.

2. Effectiveness: Evaluation of accuracy of CXK-means with respect to the centralized case by varying the number of nodes.
The algorithm performance is expected to be inversely proportional to the number of nodes, since increasing this
number leads to a reduction of the distribution ratio of the transactions over the nodes; as a consequence, each node
produces, at each step of the distributed algorithm, a local clustering solution over a small portion of data, which cannot
really represent the final overall solution. In this respect, it is crucial to assess the loss of accuracy of CXK-means with
respect to the centralized case when the number of nodes is equal (or close) to the number of nodes recognized as a
stabilization point in the efficiency evaluation.

3. Impact of collaborativeness: We conducted a further experimental session to compare our CXK-means with an existing
parallel/distributed related work, which was suitably adapted to handle XML transactional data.

5.5. Results

5.5.1. Efficiency
Fig. 7 shows time performances on the four evaluation sets by increasing the number of nodes and also varying the size

of the datasets. Results refer to structure/content-driven clustering experiments (i.e., f ∈ [0.4,0.6]) and equally distributed
in the network.

These results highlight the major advantage of CXK-means with respect to a centralized setting, which concerns a better
runtime behavior. In fact, a higher number of nodes in the network leads to more parallelism, which results in a drastic
reduction of the overall time needed for the clustering task. However, as highlighted by the complexity analysis reported in
Section 4.2, when the number of nodes grows up, the data exchanged among nodes grows up as well. This fact clearly affects
negatively the network traffic (i.e., exchange of cluster representatives) which might not be negligible anymore. Indeed, as
we can see in Fig. 7 for all datasets, after a drastic reduction of the runtime due to just a few nodes, the runtime remains
roughly constant for a certain range, then it starts to slightly increase when the number of nodes becomes significantly
higher. It should be noted that the trends shown in Fig. 7 are close to those expected, i.e., those theoretically derived by the
complexity analysis in Section 4.2; in fact, after an initial hyperbolic decreasing behavior, the efficiency follows an increasing
linear function.

Concerning the evaluation of the stabilization (saturation) points, we observed that time performances on IEEE tend to
stabilize for 6 and 4 nodes, respectively in the case of full and halved datasets; similar trends are found for Wikipedia
(8 and 6) and Shakespeare (9 and 5). On DBLP, time performances tend to stabilize for a smaller number of nodes (4 and 2,
respectively) which is probably due to a smaller size of DBLP with respect to IEEE, in terms of both transactions and
vocabulary of terms.

Another important remark is that as the dataset size is halved, the minimum number of nodes to bring down the
clustering times tends to decrease. This further supports our study on the computational complexity of CXK-means reported
in Section 4.2, in that the advantage of the distributed collaborative approach with respect to the centralized one tends to
become less significant as the dataset size is reduced.

5.5.2. Effectiveness
Tables 1(a)–(c) report on accuracy results obtained on the various datasets by CXK-means when data is equally parti-

tioned over the nodes. We varied the number of nodes and the type of clustering setting (i.e., structure-, content-, and
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Fig. 7. Clustering time performances varying the number of nodes and the dataset size: (a) DBLP, (b) IEEE, (c) Shakespeare, and (d) Wikipedia.

structure/content-driven clustering). For the sake of presentation, here we show results for a maximum number of nodes
equal to 9, since accuracy results for nodes from 11 to 19 followed similar trends.

For each dataset and clustering setting, results refer to multiple (10) runs of the algorithm and correspond to F-measure
scores averaged over the range of f values specific of the clustering setting. Moreover, the best setting of parameter γ was
found to be close to high values (typically above 0.85), for each dataset and type of clustering [33].

As it is reasonable to expect, the centralized case (i.e., one node) corresponds to an upper-bound in terms of clustering
quality for the collaborative distributed approach. While our focus is not on the effectiveness evaluation of the centralized
case—the interested reader can find details in [33]—it can be noted how the clustering accuracy decreases as the number of
nodes increases, regardless of the set and the type of clustering. However, this performance degradation remains relatively
acceptable for a distributed environment, which is partly due to our model of cluster representative in achieving good
quality summaries for the clusters. Indeed, loss of accuracy of CXK-means with respect to the centralized setting was always
lower than 0.2 in relation to the number of nodes leading to the stabilization of efficiency performance determined in the
previous paragraph (i.e., 4, 6, 9, and 8 for DBLP, IEEE, Shakespeare, and Wikipedia, respectively); precisely, the decrease in
accuracy was roughly equal to 0.08 (DBLP), 0.14 (IEEE), 0.17 (Shakespeare), and 0.13 (Wikipedia).

We also evaluated clustering accuracy in case of data unequally distributed over the nodes in the network. As shown in
Tables 2(a)–(c), results followed similar trends to those observed in the case of equal distribution of data over the nodes.
For each set and type of clustering, we observed a slight degradation of accuracy with respect to the corresponding results
achieved in the equally distributed case (Tables 1(a)–(c)). This can be explained since the local execution of CXK-means on
nodes with few transactions produces a clustering solution that is less accurate with respect to the one produced by nodes
having a higher number of transactions. However, as this performance degradation remains pretty small (from about 0.01
to 0.10), there is evidence to suggest that the global representative function is still able to produce high-accuracy cluster
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Table 1
Clustering accuracy results for data equally distributed over the nodes: (a) f ∈ [0,0.3] (content-driven similarity), (b) f ∈ [0.4,0.6] (structure/content-driven
similarity), (c) f ∈ [0.7,1] (structure-driven similarity).

(a)

set # of clusters # of nodes F-measure
(avg)

DBLP 6 1 0.795
3 0.730
5 0.701
7 0.639
9 0.574

IEEE 8 1 0.629
3 0.552
5 0.514
7 0.440
9 0.396

Shakespeare 5 1 0.964
3 0.902
5 0.861
7 0.832
9 0.790

Wikipedia 21 1 0.834
3 0.793
5 0.768
7 0.724
9 0.698

(b)

set # of clusters # of nodes F-measure
(avg)

DBLP 16 1 0.803
3 0.750
5 0.716
7 0.641
9 0.585

IEEE 14 1 0.598
3 0.524
5 0.478
7 0.423
9 0.375

Shakespeare 12 1 0.772
3 0.734
5 0.701
7 0.682
9 0.659

(c)

set # of clusters # of nodes F-measure
(avg)

DBLP 4 1 0.991
3 0.971
5 0.935
7 0.855
9 0.751

IEEE 2 1 0.655
3 0.572
5 0.527
7 0.453
9 0.406

Shakespeare 3 1 0.681
3 0.653
5 0.638
7 0.599
9 0.572

representatives even for nodes associated with a small portion of the data; a key role in this respect is played by the
local cluster sizes (i.e., weights) that are taken into account by function ComputeGlobalRepresentative along with the local
representatives outputted by each node.

In order to give just a brief summary of the accuracy results for nodes from 11 to 19, they continued to follow a
decreasing trend, but the degradation was quite small with respect to the ones achieved by our CXK-means in a network
with 9 nodes. In particular, the loss of accuracy for 19 nodes with respect to 9 nodes was of about 0.10 on average for all
datasets.

5.5.3. Comparison with a non-collaborative distributed approach
Since our proposal is, to the best of our knowledge, the first that addresses a distributed collaborative approach to

clustering XML documents, we resorted to parallel partitional clustering to select a competitor for this analysis. Specifically,
we referred to the parallel K -means algorithm [11] as a baseline, non-collaborative method. While this algorithm and our
CXK-means share the clustering strategy (i.e., centroid-based partitional clustering), we needed to adapt the former to allow
it (i) to handle XML transactions and (ii) to cluster them in a P2P network.

To enable the parallel K -means (for short, PK-means) to deal with XML transactions, the algorithm was equipped with the
notions of XML transaction similarity (instead of Euclidean distance) and XML cluster representative computation (instead
of simple mean of vectors). As far as the second aspect, we adapted PK-means, which has been designed for multi-processor
systems, to be executed in a distributed environment, particularly a P2P network. For this purpose, the multi-process archi-
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Table 2
Clustering accuracy results for data unequally distributed over the nodes: (a) f ∈ [0,0.3] (content-driven similarity), (b) f ∈ [0.4,0.6] (structure/content-
driven similarity), (c) f ∈ [0.7,1] (structure-driven similarity).

(a)

set # of clusters # of nodes F-measure
(avg)

DBLP 6 1 0.795
3 0.657
5 0.631
7 0.575
9 0.516

IEEE 8 1 0.629
3 0.541
5 0.504
7 0.432
9 0.388

Shakespeare 5 1 0.964
3 0.857
5 0.818
7 0.790
9 0.751

Wikipedia 21 1 0.834
3 0.737
5 0.714
7 0.673
9 0.649

(b)

set # of clusters # of nodes F-measure
(avg)

DBLP 16 1 0.803
3 0.675
5 0.645
7 0.577
9 0.527

IEEE 14 1 0.598
3 0.514
5 0.468
7 0.414
9 0.367

Shakespeare 12 1 0.772
3 0.697
5 0.667
7 0.648
9 0.626

(c)

set # of clusters # of nodes F-measure
(avg)

DBLP 4 1 0.991
3 0.874
5 0.841
7 0.769
9 0.676

IEEE 2 1 0.655
3 0.560
5 0.516
7 0.444
9 0.398

Shakespeare 3 1 0.681
3 0.620
5 0.606
7 0.569
9 0.543

tecture was mapped to the network nodes, each of which was associated with a local memory to store the data (to simulate
the distributed memory environment), whereas the message passing paradigm adopted by the algorithm was implemented
by exploiting the network communications.

Moreover, to ensure the performance of the two algorithms were compared fairly, the same initial configuration of
clustering was set while varying the other parameters. Specifically, for each node in the network, the initial local cluster
representatives were randomly chosen among the transactions in the local dataset, then both CXK-means and PK-means were
fed with such transactions.

Fig. 8 shows time performances of our CXK-means and PK-means on DBLP and IEEE by varying the number of nodes in
the network. Results refer to the structure/content-driven clustering case (i.e., f ∈ [0.4,0.6]) and data equally distributed in
the network. In the figure, we can observe that our CXK-means behaved better than PK-means on both sets. The time perfor-
mances of the two algorithms remained quite comparable for a relatively small number of nodes (i.e., from 1 to 11 on DBLP,
and from 1 to 9 on IEEE), whereas the gap became larger when the number of nodes in the network increased (i.e., from 13
to 19 on DBLP, and from 11 to 19 on IEEE). This result emphasizes that the higher amount of information exchanged among
the nodes when PK-means is carried out has a remarkable impact on the runtimes; in fact, the performance degradation
of PK-means is mainly due to the higher network traffic required for the communications. In addition, time profiles (on
both the datasets) of our CXK-means followed a decreasing trend, which did not change significantly for a higher number of
nodes; on the contrary, PK-means time performances had a notably increasing trend for network configurations with many
nodes, which limits the algorithm execution to relatively smaller networks.
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Fig. 8. Clustering time performances of CXK-means and PK-means by varying the number of nodes on (a) DBLP and (b) IEEE.

While efficiency analysis highlighted the advantage of our CXK-means with respect to PK-means, the accuracy results
revealed the two algorithms are substantially comparable—actually, CXK-means performed slightly better than PK-means,
with an average improvement of 0.03 over all datasets and network configurations. This result confirms that the col-
laborative strategy adopted by CXK-means in exchanging information among the nodes is extremely advantageous over a
non-collaborative distributed approach.

6. Conclusion and future work

We presented a collaborative distributed framework for clustering XML documents; to the best of our knowledge, this is
the first collaborative approach to clustering XML documents by structure and content in a distributed P2P environment. We
developed a distributed, centroid-based partitional clustering algorithm, where cluster representatives are used to describe
portions of the document collection and can conveniently be exchanged with other peers on the network. Each peer yields a
local clustering solution over its own set of XML data, and exchanges the cluster representatives with other nodes. This sort
of recommendation is used to compute global representatives, thus finally obtaining an overall clustering solution in a col-
laborative way. Experimental evidence has shown that the collaborative distributed approach outperforms the corresponding
centralized clustering setting in terms of runtime behavior, paying a limited loss of accuracy.

A natural extension of our collaborative distributed framework is to deal with semantic information of both structural
and content type from XML data, following the lead of studies such as [33]. Also, it would be interesting to investigate how
the proposed distributed clustering approach can help in the integration and classification of heterogeneous XML sources.
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