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Abstract. Generative models for text data are based on the idea that
a document can be modeled as a mixture of topics, each of which is rep-
resented as a probability distribution over the terms. Such models have
traditionally assumed that a document is an indivisible unit for the gen-
erative process, which may not be appropriate to handle documents with
an explicit multi-topic structure. This paper presents a generative model
that exploits a given decomposition of documents in smaller text blocks
which are topically cohesive (segments). A new variable is introduced to
model the within-document segments: using this variable at document-
level, word generation is related not only to the topics but also to the
segments, while the topic latent variable is directly associated to the
segments, rather than to the document as a whole. Experimental results
have shown that, compared to existing generative models, our proposed
model provides better perplexity of language modeling and better sup-
port for effective clustering of documents.

1 Introduction

In recent years, there has been a growing interest towards statistical topic mod-

els [10, 3, 25, 17, 13, 22], which assume that a document can be represented as a
mixture of probability distributions over its constituent terms, where each com-
ponent of the mixture refers to a main topic. The document representation is
obtained by a generative process, i.e., a probabilistic process that expresses doc-
ument features as being generated by a number of latent variables. A statistical
topic space is defined such that a latent variable models the (observed) word
occurrences in a document assigning them with (unobserved) class variables. In
this way, each word may belong to one or more classes and more topics can
describe each document.

Topic modeling of documents has at least one major advantage in terms
of expressiveness w.r.t. the traditional vector-space text modeling: the ability



of involving (latent) semantic aspects underlying correlations between words
to leverage the structure of topics within a document. This ability becomes
particularly relevant when documents explicitly belong to multiple topical classes
or themes, and the different topics are discussed at different parts of the text.
For instance, a scientific article on bioinformatics can be naturally divided into
several parts, each discussing a theme (e.g., related to biology, chemistry, or
databases, machine learning, etc.); and, in turn, each of these themes may be
considered as a mixture of topics. These mixtures allow for representing topical
dependence, thus facilitating an analysis of topic correlations in each document.

However, classic generative models for documents like PLSA [10] and LDA [3]
are not really able to capture topic correlations. A major reason behind this lim-
itation is that they still rely on the bag-of-words assumption, which allows for
keeping the model’s computational complexity acceptable, but also incorrectly
assumes independence among the word-topics in the document. This may neg-
atively affect the ability of the generative process in capturing the multi-topic
nature of documents: in fact, the word-to-topic probability values obtained by
the generative process makes every word to be associated to only one topic (dis-
tribution) across the document, whereas a word may potentially refer to different
topics depending on the document portions in which it appears.

The key idea of our work is that the limitations due to the bag-of-words
assumption in the context of multi-topic documents can be alleviated by a gen-
erative model which, by exploiting the underlying composition of documents into
topically coherent text blocks, or segments, is able to better capture dependen-
cies among the terms. Unlike other existing generative models, term generation
should be related not only to topics but also to segments, each of which corre-
sponds to one topic. As a consequence, the latent variable that models topics
should be directly associated to the within-document segments, rather than to
the document as a whole. In addition, although this model will continue to treat
each segment as a bag-of-words, the word-to-topic assignments will be contex-
tualized w.r.t. the various segments, thus generating proper topic distributions
for each term according to the segment in which the term occurs.

In this work we propose Segment-based Generative Model (SGM), which has
the characteristics described above as it explicitly considers the presence of top-
ically coherent blocks of text (segments) within each document by introducing
a segment model variable in the generative process. Being able to model the
within-document text segments, the overall topic distribution for any document
is a mixture of the individual distributions of topics in each of its segments.

We carried out a twofold evaluation in terms of language model predictability
as well as support for effective clustering of documents. Particularly, we resorted
to an information-theoretic formulation of the centroid-based agglomerative hier-
archical scheme for clustering documents represented as probability mass func-
tions (pmfs) in a topic-feature space. Experiments conducted on multi-topic
document collections have shown that our segment-based approach to document
generative modeling improves both language predictability—perplexity up to
twice as better than competing models—and document clustering performance—



average gains up to 10% better than competing models in terms of F-measure,
Entropy, and Normalized Mutual Information. Moreover, clustering of topically-
segmented documents based on our generative model has shown to outperform
a traditional document clustering approach in which segments are represented
based on the conventional vector-space model.

2 Related Work

Topic modeling. The problem of identifying a topic feature space in a given doc-
ument collection has been originally addressed by mapping the term-document
representation to a lower-dimensional latent “semantic” space [6]. Following
this line, one of the earliest methods is Probabilistic Latent Semantic Analy-

sis (PLSA) [10]. PLSA is essentially a probabilistic version of LSA [6], in which
the conditional probability between documents and terms is modeled as a latent
variable. An extension of PLSA, called Ext-PLSA [13], has also been proposed
to specifically support document clustering. Ext-PLSA introduces a new latent
variable that allows words and documents to be clustered simultaneously; using
this extra-variable can in principle be beneficial in cases where there are more
topics than clusters in a document collection. Our proposed model has an addi-
tional variable w.r.t. PLSA as well, i.e., a variable modeling the within-document
segments. Unlike Ext-PLSA, SGM does not provide a direct mechanism for co-
clustering or for deriving a document clustering solution, however it facilitates
the identification of a more refined topical structure as it handles topic distribu-
tions that are related to segments rather than documents.

PLSA generates a model for each document separately from the other ones
in the collection. This restriction is removed by a fully generative approach, La-
tent Dirichlet Allocation (LDA) [3]. LDA is a corpus-oriented model, since the
generative process consists of a three-level scheme that involves the whole col-
lection, the documents, and the words in each document. For each document, a
distribution over topics is sampled from a Dirichlet distribution; for each word
in a document, a single topic is selected according to this distribution, and each
word is sampled from a multinomial distribution over words specific to the sam-
pled topic. However, exact inference in LDA is not tractable, therefore a number
of approximate inference approaches have been developed, such as expectation
propagation, collapsed Gibbs sampling, collapsed variational inference. More-
over, although possessing a consistent generative semantics, LDA is not able to
capture correlations among topics, since the topic proportions as derived from a
Dirichlet distribution are substantially independent.

Text segmentation. Text segmentation is concerned with the fragmentation of
an input text into smaller units (e.g., paragraphs) each possibly discussing a
single main topic. Regardless of the presence of logical structure clues in the
document, linguistic criteria and statistical similarity measures have been mainly
used to identify thematically-coherent, contiguous text blocks in unstructured
documents (e.g., [9, 2, 5]).



The TextTiling algorithm [9] is the exemplary similarity-block-based method,
which has been successfully used in several application domains (e.g., science
magazine articles, topic detection and tracking data) for retrieval purposes. Text-
Tiling is able to subdivide a text into multi-paragraph, contiguous and disjoint
blocks that represent passages, or subtopics. More precisely, TextTiling detects
subtopic boundaries by analyzing patterns of lexical co-occurrence and distribu-
tion in the text. Terms that discuss a subtopic tend to co-occur locally, and a
switch to a new subtopic is detected by the ending of co-occurrence of a given
set of terms and the beginning of the co-occurrence of another set of terms. All
pairs of adjacent blocks of text are compared using the cosine similarity measure
and the resulting sequence of similarity values is examined in order to detect the
boundaries between coherent segments.

Combining topic modeling and text segmentation. To the best of our knowledge,
there are only a few studies that address topic modeling and text segmentation
in a combined way. The key idea is generally to improve the performance of
text segmentation algorithms under the assumption that topic segments tend to
be lexically cohesive and a switch to a topic corresponds to a shift in the term
distribution. For instance, in [4] PLSA is used to model text blocks and segment
boundaries are determined based on similarity values between term vectors of
adjacent blocks. In [20], a document is seen as a corpus that is comprised of the
within-document blocks, where each document block is a set of sentences. LDA
is then carried out on each block, whereas boundaries are identified by exploit-
ing a Fisher kernel similarity method. A single framework for topic modeling
and segmentation has been presented in [18]. The generative process works on
the text segmented on the basis of sentences and utilizes a hierarchical Bayesian
model which extends LDA to also include mixture of topics. However, because
of the increase in the parameter burden compared to LDA, parameter estima-
tion becomes a harder task, and it is not clear from the presented experiments
whether significant advantages in clustering performance can be obtained on
large, multi-topic real collections.

Our proposal differs from the above methods significantly, since it does not
define a new topic-based segmentation approach. Rather, we design a document
generative model specifically for topically-segmented documents. To this aim,
a new model variable is introduced for the within-document segments. Thus,
being able to involve terms as well as text segments in a document in the gener-
ative process, our approach aims to lead to a finer-grained identification of topic
distributions in the document generative process.

Recently, the availability of document segments in the document generative
process has been exploited in a model called STM [8]. STM is based on a two-
parameter Poisson Dirichlet process that employs a collapsed Gibbs sampler in a
hierarchical model structure. STM substantially extends LDA by introducing a
further level to represent the document segments. Although our SGM and STM
are both generative models that handle document segments, they are quite dif-
ferent. SGM is a two-level generative model and simply exploits one segment
variable in a standard EM process, whereas STM is a four-level model that is
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Fig. 1. Plate-based graphical model representation of SGM. The outer plate repre-
sents documents, whereas the inner plates represent the repeated choice of topics and
segments (upper plate) and of words (bottomer plate) within a document

generated via an approximation process (i.e., the Gibbs sampling). Such differ-
ences are important in terms of complexity of the model. In addition, SGM is
able to generate model topics for a single document independently from the oth-
ers in the collection, whereas STM is a generative model for a corpus (like LDA):
in fact, STM models the document segments by introducing ad additional level
in the LDA generative process, and this leads to multiple pmfs for each term, as
topics generate terms in each segment; by contrast, SGM is a simpler generative
process that puts terms and segments on the same level, and topics generate
segments and terms simultaneously.

3 Model Definition

In this section, we describe our Segment-based Generative Model (SGM). We
are given a collection of documents D = {d1, . . . , dN} and a set of words V =
{w1, . . . , wM}, which represents the vocabulary of D. Each document d ∈ D is a
sequence of nd words. We denote with Z = {z1, . . . , zT } the set of hidden topics,
where Z represents a latent variable model that associates topics (unobserved
class variables) with word occurrences (observed data).

We suppose that each document d ∈ D is provided as a set Sd of contiguous,
non-overlapping text blocks, or segments, and that such segments are obtained
by some text segmentation method (cf. Section 2). However, we do not make
any particular assumption about the document segmentation strategy (provided
that it is in principle coherent to the topical structure of the documents) and
the algorithmic choices of the specific text segmentation method used.

Figure 1 illustrates the graphical model representation of SGM, by which
nodes correspond to variables and boxes are plates representing replicates of
the enclosed variables. SGM utilizes one latent variable Z to model topic dis-
tributions, whereas the model variable S = {S1, . . . , SN} is used to represent
document segments. The generative process performed by SGM on a corpus D
of segmented documents can be summarized as follows:



1. Select a document d from D ⇒ Pr(d)
2. For each segment s ∈ Sd:

a) Choose a topic z for the document d ⇒ Pr(z|d)
b) Associate topic-to-segment probability to the segment s for the selected

topic z ⇒ Pr(s|z)
c) For each word w in the segment s:

– Choose a word w from the current topic and segment ⇒ Pr(w|z, s)

The key idea of SGM lies in providing a finer-grained document-to-topic
modeling by taking into account text segments. For every document in the col-
lection, the probability of choosing any topic in Z (i.e., Pr(z|d) in Step 2.a) is
generated based on the probability values Pr(s|z) (Step 2.b), which intuitively
provide a topical affinity for each segment given a selected topic. According to
this intuition, each word w in the document is generated not only by topics
but also by segments (i.e., Pr(w|z, s) in Step 2.c), as words may be related to
different topic distributions in dependence of the segment in which they occur.

The above generative process can be translated into a joint probability model
for triadic data, in which each observation is expressed by a triad defined on
documents, segments, and words:

Pr(d, s, w) = Pr(d)
∑

z∈Z

Pr(z|d) Pr(s|z) Pr(w|z, s)

Model parameter estimation is accomplished by the Expectation Maximiza-
tion (EM) algorithm [7]. Recall that EM iteratively performs two steps: the
E-step, which computes the posterior probabilities for the model parameters
according to the current parameter values, and the M-step, which updates the
model parameter in such a way that the expected log-likelihood value is maxi-
mized. Since SGM has one latent variable (Z) that models the document topics,
the E-step consists in estimating the posterior probabilities of Z given the known
model variables:

Pr(z|d, s, w) =
Pr(z, d, s, w)

Pr(d, s, w)
=

Pr(z|d) Pr(s|z) Pr(w|z, s)
∑

z∈Z Pr(z|d) Pr(s|z) Pr(w|z, s)

The M-step aims to maximize the expected value of the log-likelihood, E[L],
which is computed as:

E[L] =
∑

d∈D

∑

s∈Sd

∑

w∈V

n(d, s, w)×
∑

z∈Z

Pr(z|d, s, w) log(Pr(d, s, w))

where n(d, s, w) is the number of occurrences of word w in the segment s of
a given document d. Note that the above formula takes into account only the
relevant part of the log-likelihood function, since it is trivial to estimate Pr(d) as
proportional to

∑

s∈Sd

∑

w∈V n(d, s, w). The M-step hence requires the following
formulas to update and re-estimate the model parameters:

Pr(z|d) ∝
∑

s∈Sd

∑

w∈V

n(d, s, w) Pr(z|d, s, w)



Pr(s|z) ∝
∑

d∈D

∑

w∈V

n(d, s, w) Pr(z|d, s, w)

Pr(w|z, s) ∝
∑

d∈D

n(d, s, w) Pr(z|d, s, w)

4 Perplexity and Cluster Analysis

We devised two stages of evaluation of our SGM, respectively aimed to assess
the language model predictability of SGM through a perplexity analysis, and
to evaluate the impact of using the SGM representation of documents on the
performance of a document clustering task. For the latter evaluation, we followed
a methodology based on an information-theoretic clustering framework presented
in [16].

The perplexity criterion is widely used in language modeling to measure the
likelihood of models in representing a particular text or corpora. It is monotoni-
cally decreasing in the likelihood of a test dataset given the model (i.e., the lower
the perplexity, the higher the likelihood) and is defined as the reciprocal of the
geometric mean word-level likelihood. Formally, the perplexity of a given test
dataset D is defined as perplexity(D) = exp

(

−(
∑

d∈D log Pr(wd))(
∑

d∈D nd)
)

,
where symbol wd conventionally denotes the document d represented in terms
of a sequence of words (e.g., [3]). For our SGM, Pr(wd) corresponds to the com-
putation of Pr(d,Sd,V), as it relies on the observation of all segments in d. The
probability of observing a segment s in a document d is expressed as

Pr(d, s,V)=Pr(d)
∑

z∈Z

Pr(z|d)Pr(s|z)
∏

w∈V

Pr(w|z, s)

which relies on the observation of all words in the vocabulary given the specific
document segment s. Therefore, the probability of a specific document d is

Pr(d, Sd,V)=Pr(d)
∏

s∈Sd

∑

z∈Z

Pr(z|d) Pr(s|z)
∏

w∈V

Pr(w|z, s)

Clustering documents with an inherent multi-topic structure is traditionally
accomplished by a soft (e.g., fuzzy) clustering method to produce overlapping
clusters of documents. However, the particular document representation offered
by generative models allows in principle for exploiting simpler (i.e., hard) cluster-
ing schemes. In fact, since the generative process produces topic distribution for
each document in the corpus (i.e., Pr(z|d)), documents are represented as prob-
ability mass functions (pmfs) that are defined over a feature space underlying
topics. This topic-feature space is usually lower-dimensional than conventional
term-feature space, and is identified by a mixture model of the topic distributions
for any given document.

Distance computation. Information theory offers a variety of distance measures
to compare two pmfs [1]. Among these, the Hellinger distance [15] is partic-
ularly appealing for effectively comparing document pmfs due to a number of



Algorithm 1 Agglomerative Hierarchical Clustering of Document pmfs
Require: a set of documents D = {d1, . . . , dN} modeled as pmfs,

(optionally) a desired number K of clusters
Ensure: a set of partitions C

1: C ← {C1, . . . , CN} such that Ci = {di}, ∀i ∈ [1..N ]
2: PCi

← di, ∀i ∈ [1..N ], as initial cluster prototypes

3: C← {C}
4: repeat

5: let Ci, Cj be the pair of clusters in C such that
1

2
(HL(PCi∪Cj

,PCi
) + HL(PCi∪Cj

,PCj
)) is minimum

6: C′ ← {Ci ∪ Cj}
7: updatePrototype(C′)
8: C ← {C | C ∈ C, C 6= Ci, C 6= Cj} ∪ {C

′}
9: C← C ∪ {C}
10: until |C| = 1 (alternatively, if required, |C| = K)

advantages w.r.t. related measures, such as the Jensen-Shannon divergence and
Kullback-Leibler divergence. The Hellinger distance is a metric directly derived
from the Bhattacharyya coefficient [11], which offers an important geometric in-
terpretation in that it represents the cosine between any two vectors that are
composed by the square root of the probabilities of their mixtures.

Formally, given a discrete random variable defined on a sample space X =
{x1, . . . , xR}, xr ∈ ℜ, ∀r ∈ [1..R] and two pmfs p, q for that variable, the Hellinger

distance is defined as HL(p, q) =
√

1−BC(p, q), where BC(p, q) =
∑R

i=1
√

p(xi) q(xi) is the Bhattacharyya coefficient for the two pmfs p and q.

Clustering algorithm. Algorithm 1 shows our centroid-based-linkage agglomer-
ative hierarchical method for clustering documents pmfs. A cluster prototype
(centroid) is represented as a mixture that summarizes the pmfs of the docu-
ments within that cluster. The cluster merging criterion, which decides the pair
of clusters to be merged at each step, utilizes the Hellinger distance to compare
the cluster prototypes.

Given a collection D of documents modeled as pmfs, the algorithm follows
the classic agglomerative hierarchical scheme to yield a hierarchy C of cluster-
ing solutions; nevertheless, in order to directly compare a solution given by this
algorithm to an external partition of the document set, the algorithm may op-
tionally require a number of desired clusters. At each iteration, the prototype of
each cluster PCi

is represented as the mean of the pmfs of the documents within
that cluster. The merging score criterion (Line 5) applies to each pair of clusters
Ci and Cj , and computes the average distance between the prototype of each of
such clusters (PCi

and PCj
) and the prototype of the union cluster (PCi∪Cj

).
The pair of clusters which minimize such a distance computation is then chosen
as the pair of clusters to be merged. Intuitively, this criterion aims to measure
the lowest error merging as the one which is closest to both the original clusters.
The function updatePrototype(C′) (Line 7) computes the prototype of the new
cluster C′ obtained by merging Ci and Cj . The algorithm stops when the cluster
hierarchy is completed, or the desired number of clusters is reached.



Table 1. Datasets used in the experiments

dataset size #words #topic- avg #topic- #topic-sets avg #docs
(#docs) labels labels per doc per topic-set

IEEE 4,691 129,076 12 4.56 76 61.72
PubMed 3,687 85,771 15 3.20 33 111.73
RCV1 6,588 37,688 23 3.50 49 134.45

Assessment methodology. To assess the ability of generative models in support-
ing the discovery of groups of documents with similar topic distributions, we
exploited the availability of topic-labels for any evaluation dataset. Topic dis-
tributions identify the set of covered topics in each document, and any two
documents that are clustered together are assumed to discuss the same topics,
since their mixtures of topics had similar profiles.

We call a topic-set θ a subset of topics in Z that is entirely covered by
at least one document. Topic-sets are regarded as sets of topic-labels that may
overlap, whereas documents are kept organized in disjoint groups. Therefore, the
assignment of topic-sets to documents allows for inducing a multi-topic, hard
classification for the documents in a given dataset, which can be exploited as a
reference classification for clustering evaluation purposes. The last two columns
of Table 1 report on statistics about the topic-sets that were identified on each of
the evaluation datasets, with a coverage of at least 20 documents per topic-set.

As an example of topic-set construction, consider a set of documents D =
{d1, . . . , d7} and a set of topic-labels Z = {z1, . . . , z5} in D. Suppose that an ex-
ternal document labeling information produces an assignment of each document
in D with a subset of topics in Z as follows: d1 ← {z3, z5}, d2 ← {z1, z4}, d3 ←
{z1, z2, z5}, d4 ← {z1, z4}, d5 ← {z3, z5}, d6 ← {z1, z4}, d7 ← {z1, z2, z5}. Three
distinct topic-sets are hence present in D, i.e., θ1 = {z3, z5}, θ2 = {z1, z4}, θ3 =
{z1, z2, z5}, which correspond to a 3-class partition of D (i.e., a hard document
clustering): {{d1, d5}, {d2, d4, d6}, {d3, d7}}.

5 Evaluation and Results

We used three collections of multi-topic documents belonging to different ap-
plication domains (Table 1). IEEE represents the plain-text version of the IEEE
XML corpus 2.2, which has been used in the INEX document mining track 2008.4

IEEE main topics refer to broad thematic categories in IEEE computer science
journals such as, e.g., databases, web, parallel and distributed systems, grid com-
puting, hardware, knowledge discovery, bioinformatics. PubMed is a collection
of full free texts of biomedical articles available from the PubMed website.5 Fif-
teen topics were selected from the Medline’s Medical Subject Headings (MeSH)
taxonomy ensuring that no ancestor-descendant relationship held for any pair
of the selected topics, which include viruses, medical informatics, biochemistry,
mass spectrometry, genetics, pharmaceutical preparations, equipment and sup-
plies. RCV1 is a subset of the Reuters Corpus Volume 1 [14], which contains news

4 http://www.inex.otago.ac.nz/data/documentcollection.asp
5 http://www.ncbi.nlm.nih.gov/sites/entrez/



(a) (b)

Fig. 2. Perplexity results on (a) IEEE, (b) RCV1

headlines discussing topics about, e.g., markets, politics, wars, crimes, elections,
economics. Further details about the latter two datasets can be found in [21].
To preprocess the documents, we performed removal of stop-words and word
stemming (based on Porter’s algorithm6).

Our SGM model does not depend on a specific algorithmic choice to perform
text segmentation; in this work we used a baseline method for text segmentation,
namely the well-known TextTiling (cf. Section 2). TextTiling requires the setting
of some interdependent parameters, particularly the size of the text unit to be
compared and the number of words in a token sequence. There is no ideal setting
of such parameters as they are data-dependent, although suggested values are
6÷10 for the text unit size and 20 for the token-sequence size [9]. We differently
combined the parameter values by setting the token-sequence size around ±10
of the default 20 and by varying the text unit size from 3 to 15. We finally
selected three configurations, corresponding to the minimum, the average, and
the maximum segmentation level (i.e., number of segments produced); we will use
symbols SGMmin, SGMavg , and SGMmax to refer to instances of SGM applied
to these three segmentation schemes, for a given document collection.

We adopted an external cluster validity approach, in order to assess how well
a document clustering solution fits the topic-set-based reference classification for
a given dataset. To compare clustering solutions and reference classification, we
resorted to three widely used criteria in document clustering, namely F-measure

(F ) [19], Entropy (E ) [19], and Normalized Mutual Information (NMI ) [24]; in
general, the larger (resp. smaller) the values of F and NMI (resp. E ), the better
the clustering quality is.

5.1 Perplexity evaluation

We computed perplexity of a held-out 10%-test-set of each document collection.
The behavior of the various methods was assessed by varying the number of
topics. In general, perplexity follows a decreasing trend by increasing the number
of topics, since the probability that a document may contain topics that cover
all the words in a new (test) document decreases.

Figure 2 shows perplexity results obtained by the various methods on IEEE

and RCV1 (results on PubMed are very similar to those on IEEE, but are not

6 http://www.tartarus.org/∼martin/PorterStemmer/



Fig. 3. SGM perplexity results on IEEE by varying the number of segments

shown due to space limitations). SGM results refer to the configuration SGMavg.
Our SGM consistently exhibited perplexity lower, hence better, than all other
methods, on all datasets. In particular, fixing the number of topics at, e.g., 5, 10,
and 30, SGM obtained the following maximum gain ratios in perplexity: 1.49,
1.48, and 1.66 w.r.t. LDA; 1.46, 1.57, and 1.94 w.r.t. PLSA; 1.68, 1.68, and 2.36
w.r.t. Ext-PLSA. The advantage of SGM w.r.t. the other methods tend to be
clearer on more specialized document collections (i.e., IEEE and PubMed) as they
are generally more predictable. Nevertheless, the results illustrated in Figure 2
point out that, regardless of the particular document collection, the generative
process will benefit from a topically-segmented representation of documents to
produce a model that is more able to predict a separate test sample, thus more
effectively capturing correlations among the topic distributions.

A further question becomes if the text segmentation settings may signifi-
cantly impact on the perplexity of SGM. Figure 3 compares perplexity results
achieved by SGM with different segmentation settings (i.e., SGMmax, SGMmin,
and SGMavg) on IEEE; for the sake of brevity of presentation, we do not report
the perplexity by varying the text segmentation configurations in SGM on the
other datasets, although in those cases results followed the same trends, and
led to the same main conclusions in relation to the competing methods, as the
results shown in Fig. 2 for each specific dataset. SGMavg achieved lower per-
plexity values than the other configurations, with the following gain ratios at
5, 10, and 30 topics: 1.35, 1.29, and 1.42 w.r.t. SGMmax, and 1.09, 1.14, and
1.27 w.r.t. SGMmin. Similar perplexity trends were followed by SGMmin and
SGMmax, with the former performing slightly better than the latter (average
gain ratio of 1.13). It is also worth noticing that, even employing the SGMmin

or SGMmax configuration, our SGM would perform better than the compet-
ing methods, which is indicative of the beneficial effect of a topically coherent
decomposition of documents on the language model predictability.

5.2 Clustering evaluation

We present here our document clustering results where documents were repre-
sented by using either our SGM or one of the various competing models. To



Table 2. SGM-based clustering performance on IEEE with different segmentations

segmentation setting #segments F E NMI

SGMavg 155,828 0.64 0.58 0.49
SGMmin 89,539 0.59 0.62 0.45
SGMmax 179,491 0.58 0.60 0.47

Table 3. Summary of clustering results

F E NMI

PLSA Ext-PLSA LDA SGM PLSA Ext-PLSA LDA SGM PLSA Ext-PLSA LDA SGM

IEEE 0.53 0.56 0.46 0.64 0.70 0.73 0.62 0.58 0.37 0.32 0.44 0.49
PubMed 0.48 0.50 0.43 0.58 0.57 0.54 0.49 0.42 0.50 0.52 0.58 0.64
RCV1 0.49 0.54 0.42 0.56 0.57 0.59 0.51 0.48 0.49 0.46 0.54 0.59

avg score 0.50 0.53 0.44 0.59 0.61 0.62 0.54 0.49 0.45 0.43 0.52 0.57
avg gain +0.09 +0.06 +0.16 — +0.12 +0.13 +0.05 — +0.12 +0.14 +0.05 —

perform the document clustering task, we used the agglomerative hierarchical
method shown in Algorithm 1. The generative processes of the various models
were set in such a way that the topic variable assumed the same number of values
as the number of topic-labels given for each dataset. Ext-PLSA also required a
further latent variable related to the size of the desired clustering solutions.

We initially investigated how clustering performance based on our SGM de-
pend on the segmentation strategy chosen. For this purpose, we tested SGM
on the evaluation datasets by providing it with different input segmentations,
namely SGMmax, SGMmin, and SGMavg. Analogously to the previous analysis
on perplexity, we report results only for a selected dataset, as conclusions drawn
from the remaining datasets were very similar to those here presented. Table 2
shows clustering results obtained on IEEE. In the table, we can observe that
neither minimizing nor maximizing the number of segments (via TextTiling in
our case) improved the clustering accuracy obtained based on SGMavg. Never-
theless, a higher number of segments would seem to be preferable to a smaller
one. In fact, SGMmax achieved a little gain over SGMmin in terms of E and
NMI (both around 0.02), while being comparable on F based evaluation. This
can be explained since more segments would lead to discover (sub)topics that
are hierarchically related to the main ones but also would tend to overfit the
data, as the occurrences of any specific word will be diluted over the many seg-
ments and, consequently, such a topic-word over-specificity will correspond to
more topic distributions.

Table 3 summarizes quality results achieved by Algorithm 1; SGM results
correspond to the configuration SGMavg. A first evident remark is that our SGM
led to the best clustering quality results. In fact, improvements in F-measure
varied from 0.06 (vs. Ext-PLSA) to 0.16 (vs. LDA). Major improvements in
terms of F-measure obtained by SGM were observed on IEEE and PubMed (above
0.08 on average better than the best among the competing models), whereas
on RCV1 the performance gain was lower (about 0.02). This would confirm a
remark previously drawn from the perplexity analysis, i.e., benefits from text
segmentation in document generative modeling are more evident for relatively



long documents than short ones; although, we acknowledge that perplexity and
clustering performances are not directly related to each other, since they are
concerned with quite different aspects (such as, e.g., language predictability and
retrieval capabilities).

Looking at the performance based on the other quality measures, average
quality gains achieved by our SGM were quite similar to those previously dis-
cussed in terms of F-measure. In particular, our SGM outperformed the other
methods in Entropy based quality results from 0.05 (vs. LDA) to 0.13 (vs. Ext-
PLSA). In terms of NMI, quality improvements were from 0.05 (vs. LDA) to
0.14 (vs. Ext-PLSA).

Comparing the performance of the competing methods, LDA outperformed
both PLSA and Ext-PLSA according to entropy and NMI (up to 0.11 E and
0.12 NMI both on IEEE), whereas Ext-PLSA behaved better than the other
two methods in the case of F-measure evaluation (up to 0.12 F on RCV1). This
would suggest that by using LDA clustering solutions tend to be less coarse than
those obtained by PLSA and Ext-PLSA—because F-measure is typically biased
towards coarser clustering.

Comparison with traditional document clustering. We were also interested in a
comparative evaluation with a baseline method for document clustering. We
compared the performance achieved by clustering the segmented documents
based on our SGM with an approach that first performs the clustering of the seg-
ments from the document collection (by treating each segment as a single mini-
document), and finally derives a document clustering solution. For this purpose,
in the baseline method segments were represented by the conventional vector-
space model (VSM) equipped with the popular tf.idf term relevance weighting
scheme. Clustering of the segments was performed by using the Bisecting K-

Means [19] algorithm, which is widely known to produce high-quality (hard)
clustering solutions in high-dimensional, large datasets [23]. We used a partic-
ularly efficient implementation of Bisecting K-Means which is available in the
CLUTO clustering toolkit [12]. To facilitate the clustering by CLUTO, the seg-
ments that belong to the documents in the various collections were preprocessed
as previously discussed in this section, and the tf.idf weights associated with
the different words were determined prior to inputting them to CLUTO for clus-
tering. Since the partitioning of the segment collection produced by CLUTO
corresponds to a potentially soft clustering of the documents, we devised a sim-
ple method to derive a hard assignment of documents to clusters by adopting
a majority voting strategy (i.e., each document is assigned to the cluster that
contains the majority of its segments). Finally, the document clustering solution
derived by this approach was evaluated w.r.t. the reference classification based
on topic-sets for any specific dataset (cf. Section 4).

Table 4 summarizes results of this comparative analysis. SGM-based cluster-
ing (with configuration SGMavg) always outperformed the VSM-based clustering
on all datasets, achieving quality improvements averaged over the datasets of 0.31
F, 0.26 E, and 0.26 NMI. By modeling segmented documents, SGM was indeed
able to directly produce a hard document clustering that corresponds to a finer



Table 4. Performance of segment clustering: comparison with traditional VSM-based
document clustering

SGM-based VSM-based
clustering clustering

dataset F E NMI F E NMI

IEEE 0.64 0.58 0.49 0.21 0.84 0.21
PubMed 0.58 0.42 0.64 0.31 0.79 0.28
RCV1 0.56 0.48 0.59 0.39 0.63 0.45

avg score 0.61 0.49 0.57 0.30 0.75 0.31

mapping of documents to topic-sets, which is well-suited for better reflecting the
multi-topic nature of documents. Conversely, by treating segments that belong
to same document as independent text units to be clustered, the baseline doc-
ument clustering approach tends to produce solutions whose document clusters
are likely to be biased by those topics that are present in most of the segments
within the same document.

6 Conclusions

In this paper we presented a generative model for topically-segmented docu-
ments, which introduces a segment model variable in the generative process.
The topics of any document in a given collection are modeled as a mixture of
the individual distributions of the topics present in each of the document seg-
ments. In this way, the bag-of-words assumption (which is typically exploited
in statistical topic modeling) becomes more realistic since it is transferred to
smaller text units (i.e., document segments). As a result, the topic modeling
obtained on the within-document segments is better suited for documents that
have a multi-topic class structure, like the case of interdisciplinary documents.
Experimental evidence has demonstrated the significance of our segment-based
generative model. Results have indeed shown a consistent improvement obtained
by our model in both language predictability (expressed in terms of model per-
plexity) and document clustering effectiveness (expressed in terms of various
standard criteria for cluster validity) w.r.t. classic generative models.
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