
A high-performance fully reconfigurable FPGA-based

2D convolution processor

Stefania Perria, Marco Lanuzzaa, Pasquale Corsonellob,*, Giuseppe Cocorulloa

aDEIS, University of Calabria, Arcavacata di Rende, 87036 Rende (CS), Italy
bDIMET, University of Reggio Calabria, Loc. Feo di Vito, 89060 Reggio Calabria, Italy

Received 17 October 2003; revised 11 February 2004; accepted 8 October 2004

Available online 19 November 2005

Abstract

This paper presents a new fully reconfigurable 2D convolver designed for FPGA-based image and video processors. The proposed

architecture operates on image pixels coded with different bit resolutions and varying kernel weights avoiding power and time-consuming

reconfiguration. This is made possible by using new SIMD arithmetic modules purposely designed for the new circuit. When optimized

for the XILINX VIRTEX device family, the convolver presented in this work requires just 18.4 ms to perform a 5!5 convolution on a

1024!1024 8-bit pixels image and dissipates only 102.1 mW/MHz.

The new circuit can be exploited in all the real-time applications in which adaptive convolutions are required and it can be realized also in

many other FPGA device families.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Image processing; Convolution; Single instruction multiple data circuits
1. Introduction

Digital image processing and computer vision are rapidly

evolving research fields with a growing number of

applications for commercial, medical and military purposes.

In these areas, improving perceptual information for human

vision and processing image data for efficient storage,

transmission, and representation are two of the main goals.

Modern image processing and computer vision algor-

ithms require high computational capability, especially

when high-resolution images have to be elaborated under

real-time requirements. In such applications (e.g. image

filtering, image restoration, feature recognition, object

tracking, template matching, etc.), the spatial domain two-

dimensional (2D) convolution plays a fundamental role

[1,2]. For these reasons, the design of efficient convolvers

receives great interest [3–7].
0141-9331/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.micpro.2004.10.004

* Corresponding author. Address: DEIS, University of Calabria,

Arcavacata di Rende, 87036 Rende (CS), Italy. Tel.: C39 0984 494708;

fax: C39 0984 494834.

E-mail address: corsonello@ing.unirc.it (P. Corsonello).
In implementing image and video processing algorithms,

intensive computations are typically required [3]. Moreover,

operations on different precisions data are frequently

needed. This happens because certain steps of the

algorithms have to operate on high precision data, whereas

other steps can operate on lower precisions. In addition,

many computations needed in image processing (e.g. image

convolution) involve local image transformations resulting

in thousands of potentially parallel operations.

In order to accommodate in hardware the requirements

for elaborating both high and low precisions data with

extended parallelism, appropriate data-paths have to be

supported and extreme flexibility has to be guaranteed. The

exploitation of Single Instruction Multiple Data (SIMD)

circuits represents a good solution. In fact, as is well known,

SIMD architectures are able to efficiently elaborate the

highest precision data and guarantee fine-grained paralle-

lism in processing data on lower precisions [8,9].

In this work, a new fully reconfigurable 2D convolver for

FPGA-based image and video processors is presented. The

proposed architecture exhibits extreme flexibility and very

high computational capability.
Microprocessors and Microsystems 29 (2005) 381–391
www.elsevier.com/locate/micpro

http://www.elsevier.com/locate/micpro

S. Perri et al. / Microprocessors and Microsystems 29 (2005) 381–391382
The core of the convolution processor contains a grid of

four 16-bit SIMD 2D 3!3 convolvers. Each one exploits

new SIMD arithmetic circuits purposely designed and

optimized for the FPGA platform. The SIMD modules

adapt their structures at run-time to different bit resolutions.

Thanks to this, the new convolution processor is able to

operate on 2D images with different bit resolutions and

varying kernels avoiding the time and power consuming

reconfiguration process.

The paper is organized as follows: design motivations of

the proposed circuit are explained in Section 2, then its

architecture and the basic modules used in it are described in

Sections 3 and 4. Finally, results and conclusions are provided.
2. Research motivations

In image and video processing, convolution is a basic

operation. Thus, it can strongly influence the overall

performance. A convolution operation is usually performed

as illustrated in Fig. 1: for each pixel P(x,y) (with xZ1,.,M

and yZ1,.,N) of a M!N input image a K!R sliding

template, called convolution kernel, is convolved with the

K!R window centered on P(x,y). That is, each value into

the pixels window is multiplied by the corresponding signed

weight into the convolution kernel. Then, the K!R products

obtained in this way are added to produce the output pixel

value.

In several applications, better results are achieved if in a

single image enhancement task progressive execution of 2D

convolutions with differently sized kernels is exploited.
Fig. 1. Image convolution for KZRZ3.
For example, this happens in medical applications. There, as

shown in [10], the enhancement task is useful in scanning

skeleton images. The computational flow typically used in

these cases is illustrated in Fig. 2, which shows how

successive convolutions with differently sized kernels

enhance the perceptual quality by sharpening the input

image and bringing out more of the skeletal details.

It is worth pointing out that in order to obtain the highest

image quality and to avoid inaccurate results, also different

precisions have to be supported.

In applications requiring real-time image convolutions,

software implementations on general-purpose microproces-

sors appear to be very time consuming. Moreover,

commercial DSPs are often unable to efficiently support

image convolution. For example, the TMS320C40 DSP

microprocessor [11] requires about 20 instruction cycles per

pixel when a 3!3 kernel is used [3]. It is then clear that

special purpose parallel circuits for convolution can

represent efficient solutions to provide high computational

capabilities and to ensure high throughput data rates.

Several hardware implementations of convolvers able to

satisfy real-time constraints exist in literature. Many of them

[3–7] take advantages of FPGAs to accelerate convolution

operations. Even though FPGA devices lead with extremely

flexible hardware, previous proposals appear inflexible from

an application point of view. In fact, they operate on kernels

with fixed-size and fixed-precision pixels (usually 8- or

16-bits). Moreover, just restricted set of kernel weights are

typically supported. As an example, the 2D 3!3 convolver

presented in [3] supports convolutions in which kernel

weights can assume only the values K4, K2, K1, 0, 1, 2, 4.

This approach yields excellent performance and device

utilization, since only multiplications by constants have to

be executed. But, as a drawback, this kind of circuits is

useless in applications like video processing with special

effects and real-time image manipulation, where the kernel

weights and the convolution window size could vary at run-

time. For these applications changing convolution window

size, pixel resolution and/or kernel weights at run-time

avoiding the conventional FPGA reconfiguration process is

very useful to save time and power consumption.
3. The architecture of the new 2D run-time
reconfigurable convolver

Run-time reconfigurability makes the proposed special-

ized image convolution processor able to perform user

programmable 2D image convolution operations.

The possible operation modes and the parallelism levels

supported by the new convolver are summarized in Table 1.

The control signals rec and Select_window establish

what pixels resolution and convolution window size

the convolver has to operate on, respectively. For example,

when both the control signals are low, four adjacent 3!3

image convolutions on 16-bit pixels and 16-bit kernel

Fig. 2. Enhancement task.

S. Perri et al. / Microprocessors and Microsystems 29 (2005) 381–391 383
weights are executed in parallel per clock cycle. The new

circuit can provide such high parallelism levels thanks to a

flexible grid used as computational core and consisting of

four 16-bit 2D 3!3 SIMD convolvers. In the following, the

latter are referred to as basic convolvers.

In Fig. 3, the whole structure of the new circuit is

illustrated. The input image pixels are transferred to the

convolver row-by-row in accordance with the usual raster-

scan order [3,12]. On the contrary, the kernel weights are

initially loaded through the Pixel_Weights bus from an

external source (e.g. a host computer or an external

memory). Then, they are internally stored.

In all the supported operation modes, the arrival of input

pixels to the four basic convolvers has to be synchronized to

ensure that the pixels involved in the operations are

processed at the same time. In order to do this, the Buffer

interfaces, appropriate internal registers, and FIFO mem-

ories are used. In this way the basic 3!3 convolvers can

operate simultaneously. In fact, at the same time they

multiply the received image pixels by the stored kernel

coefficients and add the resulting products to form the final

output. FIFOs play an important role. In fact, they allow a
Table 1

Supported instructions

Rec Select_window Instruction Paralle-

lism level

0 0 16-bit 3!3 image

convolution

4

1 0 8-bit 3!3 image

convolution

8

0 1 16-bit 5!5 image

convolution

1

1 1 8-bit 5!5 image

convolution

2

large number of time-consuming memory accesses to be

avoided when the input image is stored in an external RAM

memory [12]. To efficiently support all the above shown

operation modes, FIFOs have been organized as variable

depth 64-bit FIFOs. That is, they can be configured in

accordance with the control signals rec and Select_window.

The 2!2 grid of 3!3 convolvers is organized as shown in

Fig. 4. It allows 3!3 and 5!5 2D convolutions to be

supported on both 16-bit and 8-bit image pixels and kernel

weights. This is made possible thanks to purposely designed

SIMD arithmetic circuits and to appropriate multiplexing

stages exploited in the basic 2D 3!3 convolvers. The SIMD

submodules are able to perform both 16-bit and 8-bit

additions and multiplications. As a consequence, each

basic convolver can execute one 16-bit 3!3 convolution

or two parallel and independent 3!3 8-bit convolutions.

When a 5!5 convolution is required, each basic convolver

elaborates a 3!3 window, which is a subarray of the larger

5!5 image window. The multiplexing stages visible in

Fig. 4 allow the input data of the basic convolvers to be

properly formed as a function of the chosen kernel size. In the

referred case, adjacent convolvers have to simultaneously

elaborate different portions of the 5!5 convolution window

[3]. In order to ensure data arriving at appropriate time for

both 16-bit and 8-bit pixels resolutions three 16-bit delay

registers are used. Partial results produced by the first three

convolvers are inputted to the fourth convolution circuit,

which then computes the expected final output.
4. The 3!3 basic SIMD convolver

In order to describe the implementation strategy exploited

in the basic 2D 3!3 SIMD convolver, let us consider a 3!3

Fig. 3. The new convolution processor architecture.

S. Perri et al. / Microprocessors and Microsystems 29 (2005) 381–391384
convolution mask with 16-bit kernel weights and 16-bit

pixels. In this case, the relationship between the input pixels

P(x,y), the convolution kernel weights W(i,j) and the

convolved pixels P 0(x,y) is given by Eq. (1)
Fig. 4. The reconfigurable 2!2 gri
P0
ðx;yÞ½15 : 0�ZSAT

XC1

iZK1

XC1

jZK1

PðxCi;yCjÞ½15 : 0�Wði;jÞ½15 : 0�

()

ð1Þ
d of SIMD 3!3 convolvers.

Fig. 5. The 2D SIMD 3!3 basic convolver.

S. Perri et al. / Microprocessors and Microsystems 29 (2005) 381–391 385
where x and y are the coordinates of pixels into the input

image; i and j are the coordinates of weights into the kernel

mask; and SAT indicates a saturation operation performed on

the output pixel. Saturation is used to fix the bit resolution of

the resulting pixel to 16-bits. Negative results are saturated to
zero, whereas overflowing positive results are saturated to the

maximum 16-bit positive value.

As shown in [8,9], a 16!16 binary multiplication can be

performed operating on the 8-bit subwords of the operands.

Therefore, Eq. (1) can be rewritten as Eq. (2)

S. Perri et al. / Microprocessors and Microsystems 29 (2005) 381–391386
P0
ðx;yÞ½15 :0�ZP0

ðx;yÞ½15 :8�linkP0
ðx;yÞ½7 :0�

ZSAT
X1

iZK1

X1

jZK1

Wði;jÞ½15 :8�PðxCi;yCjÞ½15 :8�

" #(

!link
X1

iZK1

X1

jZK1

Wði;jÞ½7 :0�PðxCi;yCjÞ½7 :0�

" #

C
X1

iZK1

X1

jZK1

½LLS8ðWði;jÞ½15 :8�PðxCi;yCjÞ½7 :0�Þ

CLLS8ðWði;jÞ½7 :0�PðxCi;yCjÞ½15 :8�Þ�

)
ð2Þ

where link and LLSk indicate a link action and a logical left

shift by k bit positions, respectively.

Eq. (2) suggests that a 16-bit 2D convolver can be

realized exploiting SIMD arithmetic circuits, able to operate

simultaneously on the operands subwords. The independent

results obtained in this way can be then combined to

generate the whole expected 16-bits saturated result. The

main advantage of this approach resides in the possibility of

performing also two parallel independent 8-bit convolutions

using the same circuit.

In Fig. 5, the top-level architecture of the basic 2D 3!3

SIMD convolver is depicted. As explained in Section 3,

each basic convolver can operate in autonomous (Select_-

windowZ0) or in linked mode (Select_windowZ1). When

Select_window is low the image pixels are inputted in

parallel to the nine 16-bit input registers. On the contrary

when Select_window is high only the first 16-bit register of

each convolution row receives a pixel per clock cycle.

Kernel weights are pre-loaded from an external source. It is

worth noting that each 16-bit register contains one 16-bit or

two 8-bit pixel values in accord to the signal rec.
Fig. 6. The subword ad
In order to operate in SIMD fashion, the Subword

Adressing Circuit illustrated in Fig. 6 has been purposely

designed. It implements a multiplexing stage, which

dispatches the appropriate operands to the SIMD multipliers

depending on the signal rec. When convolutions on 16-bit

pixels are required, each SIMD multiplier performs one

16!16 pixel-by-weight product. The nine 32-bit indepen-

dent results obtained in this way, are then added by the

SIMD Adder Tree, which generates a 32-bit word. The latter

is inputted to the SIMD Saturation Module that saturates the

output to the appropriate 16-bit value. On the contrary,

when convolution operations on 8-bit pixels have to

be performed, each multiplier executes two independent

8!8-bit multiplications. Thus, two separate sets of nine

16-bit products are obtained in parallel. Then, they are

independently added by the SIMD Adder Tree, which

produces two independent 16-bit results that are separately

saturated to the appropriate 8-bit values by the SIMD

saturation module.

From Fig. 5, it can be seen that each basic convolver is

structured as a two stages pipeline. Thus, the whole

convolution processor exhibits a latency of just one pixel

line plus two clock cycles.

4.1. The SIMD multiplier

As it is well known designing efficient multipliers for an

FPGA platform is not trivial. In fact, many of the existing

multiplier architectures are typically inadequate to take

advantages of dedicated carry-propagate logic and fast

routing resources available in FPGA devices. As an

example, referring to ASIC designs, the well-known

Booth and Wallace Tree multipliers are faster than other

multiplier schemes, but their irregular structures result

unsuitable to exploit dedicated routing resources available
dressing circuit.

S. Perri et al. / Microprocessors and Microsystems 29 (2005) 381–391 387
in FPGAs. On the contrary, Carry Propagate Array

Multipliers allow the special resources available into

FPGAs to be efficiently exploited [13].

As previously mentioned, a 16!16-bit binary multipli-

cation can be computed by combining the 16-bit subpro-

ducts between the most significant and least significant 8-bit

subwords (PZP[15:9] P[7:0]; WZW[15:8] W[7:0]) of the

operands as shown in Fig. 7. This approach suggests that a

16-bit Carry propagate Array Multiplier can be partitioned

to compute also two 8!8-bit independent binary

multiplications.

In Fig. 8, the block diagram of the proposed SIMD

multiplier is depicted. The Multiplicand Management Unit

properly forms the input data of the Reconfigurable Partial

Product Generators. In particular, as summarized in Eqs.

(3) and (4) it provides either the whole 16-bit operand P or

its 8-bit subwords properly extended to 16-bit

PZ½i� Z
P½i�; rec Z 0

0; rec Z 1
i Z 0;.; 7

(
(3)

SI_PZ½i� Z
P½i�; rec Z 0

P½7�; rec Z 1
i Z 8;.; 15

(
(4)

Eight 2!16-bit Reconfigurable Partial Product Gen-

erators generate partial products, which are then added two

by two to generate the 32-bit multiplication results.

As shown in Fig. 8, to this aim three levels of addition are

needed. Among the used adders four are Reconfigurable

Ripple Carry Adders, which operate on different precision

data thus making the partition of the Array Multiplier

possible. The remaining three adders are fixed-precision

Carry Propagate Adders.

All of the modules used in the SIMD multiplier optimally

exploit the dedicated fast logic and routing resources

available into a FPGA device. In the following, the Xilinx

Virtex family is referred to, but a similar approach can
Fig. 7. The SIMD m
be applied in many other device families. In Xilinx

Virtex FPGAs [13] each slice contains two four input

Look-Up Tables (LUTs), implementing logic function

generators, two flip-flops and additional AND components

(MULT_AND), multiplexers (MUXCY) and exclusive OR

(XORCY) gates for high-speed arithmetic circuits. MUL-

T_AND gates are used for implementing fast and small

multipliers, whereas MUXCY and XORCY gates are

suitable to realize 1-bit high-speed full-adders. All these

auxiliary elements have been used in the realization of the

high speed carry chains involved in the arithmetic circuits

purposely designed for the new convolver.

Fig. 9 details how dedicated FPGA’s logic has been

efficiently exploited to realize the 2!16-bit Reconfigurable

Partial Product Generator. It can be noted that two partial

products are generated ANDing the operand P[15:0] with

the operand bits W[iC1,i]. Then, the obtained results are

added. To perform the above operation 4-bits are inputted to

each LUT in the slice. The output of the LUT drives the

selection control line of MUXCY and one input of XORCY.

The former generates the carry propagated to the next 1-bit

addition stage whereas the latter provides the sum bit of the

current addition stage. It is also important to underline that

the MULT_AND gate guarantees fast generation of the

carry generate signal in the current sum position.

From Fig. 9, it can be seen that a MUXCY controlled by

the signal rec is used to break the carry propagation in an

established position. When 16!16-bit multiplication is

required (recZ0) this MUXCY propagates the carry signal

to the next addition stage, otherwise a logic zero is

propagated. In this way, two independent results are

generated for lower precision data.

In Fig. 10, the structure of the Reconfigurable Ripple

Carry Adders is illustrated. Each LUT in the slice receives

two operand bits (e.g. A[i] and B[i]) as input and generates

the corresponding propagate signal P[i]ZA[i] xor B[i]. The

LUT output drives the selection input of MUXCY and one

input of XORCY, which generate the carry-out and the sum
ultiplier tree.

Fig. 8. The 16-bit SIMD multiplier.

S. Perri et al. / Microprocessors and Microsystems 29 (2005) 381–391388
bit of the full-adder, respectively. Using this full-adder

scheme the length of the carry chain is 2-bits for slice and

the carry propagation occurs quickly through the special

routing resources. Also for the Reconfigurable Ripple Carry

Adders, a MUXCY controlled by the signal rec has been

used to guarantee run-time partitioning of the Array

Multiplier.
4.2. The SIMD Adder Tree

To efficiently add the 32-bit partial results coming from

the nine SIMD multipliers belonging to a basic 3!3

convolver the adder tree shown in Fig. 11 has been used.
Fig. 9. The reconfigurable 2!16
It consists of eight SIMD Ripple Carry Adders implemented

using the FPGA dedicated carry chains. Depending on the

signal rec, each adder generates either one 32-bit or two

independent 16-bit results.
4.3. The SIMD saturation module

The SIMD saturation Module performs a saturation

operation on the output pixels. Negative results are saturated

to zero, whereas overflowing positive results are saturated to

a maximum positive value depending on the actual

precision. Relations Eqs. (5) and (6) show how saturation

is performed when recZ0 (i.e. one 16-bit saturated result
partial product generator.

Fig. 10. The reconfigurable ripple carry adder.

S. Perri et al. / Microprocessors and Microsystems 29 (2005) 381–391 389
has to be generated) and recZ1 (i.e. two 8-bit saturated

results have to be generated), respectively

If S½31� Z 1/Saturated Result½15 : 0� Z 0

If S½31� Z 0 & ORðS½30�;.; S½16�Þ Z 1

/Saturated Result½15 : 0� Z 1

Else Saturated Result½15 : 0� Z S½15 : 0�

(5)

If S½15� Z 1/Saturated Result½7 : 0� Z 0

If S½31� Z 1/Saturated Result½15 : 8� Z 0

If S½15� Z 0 & ORðS½14�;.; S½8�Þ Z 1

/Saturated Result½7 : 0� Z 1

If S½31� Z 0 & ORðS½30�;.; S½24�Þ Z 1

/Saturated Result½15 : 8� Z 1

Else Saturated Result½7 : 0� Z S½7 : 0�

Saturated Result½15 : 8� Z S½23 : 16�

(6)
Fig. 11. The SIMD Adder Tree.
5. Results

The proposed FPGA-based convolver processor has

been realized on a XILINX VirtexE XCV2000e device

using the XILINXe Integrated Software Environment

(ISE) 5.2i and it has been prototyped for the elaboration

of 256!256 image block size. In this case, to properly

manage 3!3 and 5!5 convolution windows for both 8-

bit and 16-bit pixels and kernel weights, FIFOs visible in

Fig. 3 are made configurable as 32-, 64-, 128- or 256-

depth 64-bit FIFOs. Obviously, what condition arises is

established in accordance with the control signals rec and

Select_window.

The layout of the new circuit is illustrated in Fig. 12. It

has been realized utilizing 2048 slices for the two

Reconfigurable FIFOs and 7262 slices for the basic

convolvers and buffer interfaces. In other words, only

48% of the available slices have been occupied. Such

compact layout has been obtained by a very careful place

and route that also allowed performances of each basic 3!3

convolver to be optimized. In fact, also the carry-chains

existing in the SIMD computational elements of the

proposed convolver optimally exploit fast logic and routing

resources available in Virtex FPGAs.

Timing Analyzer and XPower tools from XILINX ISE

5.2i software have been used for post-layout measuring the

worst-case delay and the power consumption, respectively.

For the dissipated power measurement the default par-

ameters values provided by XPower have been used with

uniform distribution of the operands (i.e. all activity rates

equal to 100%) and a capacitive load of 10 pF for all the

output signals.

Post-layout characterization results show that the new

convolver reaches a maximum running frequency of

28.6 MHz. Thus, it can execute up to 228.8 MOPS and

114.4 MOPS when performing 8-bit and 16-bit 3!3 2D

convolutions, respectively. Whereas, when 5!5 2D

Fig. 12. The layout of the new convolution processor.

S. Perri et al. / Microprocessors and Microsystems 29 (2005) 381–391390
convolutions are required up to 57.2 MOPS and 28.6 MOPS

can be supported by the proposed architecture. This very

high computational capability is achieved with an average

energy dissipation of just 102.1 mW/MHz.

The proposed circuit has been compared to the FPGA-

based convolvers presented in [3,5,6]. Comparison results

are summarized in Table 2. It is important to note that

characteristics of the compared circuits are related to the

elaboration on specific image block sizes. Nevertheless, the

advantages of the convolver presented in this work are

evident with respect to the previous proposals. The new

circuit exhibits an extreme flexibility accomplished with the

highest computational capability. In particular, it performs

both 3!3 and 5!5 convolutions on both 8-bit and 16-bit

data guaranteeing the maximum parallelism level for all the

supported operation modes and avoiding time- and power-

consuming bit-stream uploading. On the contrary,

implementations described in [3,5] can perform just one

8-bit 3!3 convolution. The circuit recently proposed in [6]

provides an intermediate flexibility since it can execute one

16-bit 3!3 convolution or two parallel 8-bit 3!3

convolutions. Furthermore, it is worth underlining that
Table 2

Comparison results

New

Block size 256!256

Device XCV2000e

Energy (pJ) 102.1

No. of device 1

Area for logic 7262 slices

Memory size 32 Kbits

MOPS 8-bit 3!3 228.8

MOPS 16-bit 3!3 114.4

MOPS 8-bit 5!5 57.2

MOPS 16-bit 5!5 28.6

3!3 convolution on 1024!1024 8-bit pixels image (ms) 4.6

a It has been obtained from data given in [3] ignoring the number of slices use
the convolvers described in [3,5] supports only fixed sets of

kernel weights. More exactly, the architecture described in

[3] requires the execution of only multiplications by

constants, whereas the convolver presented in [5] requires

only multiplications by power of two (i.e. simple left shifts).

Due to this, lower area occupancy is obtained but at the

expense of flexibility and computational capabilities. On the

contrary, the new convolver and that reported in [6] can

operate on any kernel weights since they use general

multipliers.

In order to demonstrate the efficiency of the new

convolution processor with respect to previous proposals,

the computational time required to perform a 3!3

convolution on a 1024!1024 image with 8-bit pixels

has been evaluated for all the compared circuits. As

shown in Table 2, the proposed approach allows a much

lower elaboration time to be reached. When performing a

5!5 convolution on a 1024!1024 image with 16-bit

pixels the proposed circuit requires just 36.7 ms. It is

worth pointing out that previously proposed convolvers do

not support this operation mode. Thus, comparison data

are not available.
6. Conclusions

Modern digital image processing and computer vision

applications can take advantage from 2D convolutions on

different kernel sizes and bit-resolution image pixels.

SRAM-based FPGAs seem the obvious candidates to

achieve an extreme flexibility.

In this paper, the design of a new high-speed energy

efficient FPGA-based 2D convolver has been presented.

The new architecture supports 3!3 and 5!5 2D

convolutions for both 16-bit and 8-bit pixels and kernel

weights avoiding the conventional time and power

consuming reconfiguration process. This nice feature

makes the new circuit very suitable to efficiently support
[3] [5] [6]

68!68 128!128 68!68

XC4013 XCV300 XCV400

NA NA 15.7

2 1 1

484 CLBsa 584 slices 1758 slices

1040-bits 7.68 Kbits 2080-bits

25 49 78.8

– – 39.4

– – –

– – –

42 21 13

d for FIFOs, control and interface modules.

S. Perri et al. / Microprocessors and Microsystems 29 (2005) 381–391 391
modern image processing algorithms in which adaptive

2D convolutions are required.
References

[1] V. Hecht, K. Rönner, P. Pirsch, An advanced programmable 2D-

convolution chip for real time image processing, Proceedings of IEEE

International Symposium on Circuits and Systems (ISCAS), 1991, pp.

1897–1900.

[2] Y. Leblebici, A. Kepkep, F.K. Gürkaynak, H. Özdemir, Fully

programmable real time (3!3) image filter based on capacitive

threshold-logic gates, Proceedings of IEEE International Symposium

on Circuits and Systems, 1997, pp. 2072–2075.

[3] B. Bosi, G. Bois, Y. Savaria, Reconfigurable pipelined 2D convolvers

for fast digital signal processing, IEEE Transactions on VLSI Systems

7 (3) (1999).

[4] R.G. Shoup, Parameterised convolution filtering in an FPGA in:

W. Moore, W. Luk (Eds.),, More FPGAs, Abingdon EE&CS Books,

Abingdon, England, 1993, pp. 274–280.

[5] A.E. Nelson, Implementation of Image Processing Alghorithms on

FPGA Hardware, PhD thesis, Faculty of the Graduate School of

Vanderbilt University, Nashville, TN, May 2000.
[6] S. Perri, M. Lanuzza, P. Corsonello, G. Cocorullo, SIMD 2-D

convolver for fast FPGA-based image and video processors,

Proceedings of the Military and Aerospace Programmable Logic

Devices (MAPLD) International Conference, Washington, USA,

September 2003.

[7] A.S. Dawood, S.J. Visser, J.A. Williams, Reconfigurable FPGAS for

real time image processing in space. Proceedings of the14th

International IEEE Digital Signal Processing (DSP) Conference,

vol. 2, 2002, pp. 845–848.

[8] S. Perri, M. Lanuzza, P. Corsonello, G. Cocorullo, Fully-synthesiz-

able reconfigurable multiplier for high-performance multimedia

processors, Proceedings of the International Signal Processing

Conference, Dallas, Texas, March 31–April 3, 2003.

[9] A. Farooqui, V.G. Oklobdzija, A programmable data-path for MPEG-

4 and natural hybrid video coding, 34th Annual Asilomar Conference

on signals, Systems and Computers, Pacific Grove, California,

October 29–November 1, 2000.

[10] R. Gonzalez, R. Woods, Digital Image Processing, second ed.,

Prentice-Hall, Englewood Cliffs, NJ, 2002.

[11] Texas Instruments, TMS320C40 DIGITAL SIGNAL PROCESSOR

Datasheet, January 1996.

[12] A. Benedetti, A. Prati, N. Scarabottolo, Image convolution on FPGAs:

the implementation of a multi-FPGA FIFO structure, Proceedings of

the 24th Euromicro Conference, Vesteras, Sweden, 1998.

[13] Xilinx Inc., Constraints Guide—ISE 5, USA, 2002.

	A high-performance fully reconfigurable FPGA-based 2D convolution processor
	Introduction
	Research motivations
	The architecture of the new 2D run-time reconfigurable convolver
	The 3x3 basic SIMD convolver
	The SIMD multiplier
	The SIMD Adder Tree
	The SIMD saturation module

	Results
	Conclusions
	References

